
DATABASE MANAGEMENT SYSTEM

(Effective from the academic year 2018 -2019) SEMESTER – V
Course Code 18CS53
CIE Marks 40
Number of Contact Hours/Week: 3:2:0
SEE Marks: 40
Total Number of Contact Hours: 50
Exam Hours: 03

CREDITS –4
Course Learning Objectives: This course (18CS53) will enable students to:

 Provide a strong foundation in database concepts, technology, and practice.

 Practice SQL programming through a variety of database problems.

 Demonstrate the use of concurrency and transactions in database

 Design and build database applications for real world problems.

Module 1 Contact Hours:10

Introduction to Databases: Introduction, Characteristics of database approach, Advantages of using the DBMS

approach, History of database applications. Overview of Database Languages and Architectures: Data Models,

Schemas, and Instances. Three schema architecture and data independence, database languages, and interfaces, The

Database System environment. Conceptual Data Modelling using Entities and Relationships: Entity types,

Entity sets, attributes, roles, and structural constraints, Weak entity types, ER diagrams, examples, Specialization

and Generalization.

Textbook 1:Ch 1.1 to 1.8, 2.1 to 2.6, 3.1 to 3.10

RBT: L1,L2, L3

Module 2 Contact Hours:10

Relational Model: Relational Model Concepts, Relational Model Constraints and relational database schemas,

Update operations, transactions, and dealing with constraint violations. Relational Algebra: Unary and Binary

relational operations, additional relational operations (aggregate, grouping, etc.) Examples of Queries in relational

algebra. Mapping Conceptual Design into a Logical Design: Relational Database Design using ER-to-Relational

mapping. SQL: SQL data definition and data types, specifying constraints in SQL, retrieval queries in SQL,

INSERT, DELETE, and UPDATE statements in SQL, Additional features of SQL.

Textbook 1: Ch4.1 to 4.5, 5.1 to 5.3, 6.1 to 6.5, 8.1; Textbook 2: 3.5
RBT: L1, L2, L3

Module 3 Contact Hours:10

SQL : Advances Queries: More complex SQL retrieval queries, Specifying constraints as assertions and action

triggers, Views in SQL, Schema change statements in SQL. Database Application Development: Accessing

databases from applications, An introduction to JDBC, JDBC classes and interfaces, SQLJ, Stored procedures,

Case study: The internet Bookshop. Internet Applications: The three-Tier application architecture, The

presentation layer, The Middle Tier

Textbook 1: Ch7.1 to 7.4; Textbook 2: 6.1 to 6.6, 7.5 to 7.7.

RBT: L1, L2, L3

Module 4 Contact Hours:10

Normalization: Database Design Theory – Introduction to Normalization using Functional and Multivalued

Dependencies: Informal design guidelines for relation schema, Functional Dependencies, Normal Forms based on

Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form, Multivalued Dependency and Fourth

Normal Form, Join Dependencies and Fifth Normal Form. Normalization Algorithms: Inference Rules,

Equivalence, and Minimal Cover, Properties of Relational Decompositions, Algorithms for
Relational Database Schema Design, Nulls, Dangling tuples, and alternate Relational
10

Designs, Further discussion of Multivalued dependencies and 4NF, Other dependencies and Normal Forms

Textbook 1: Ch14.1 to 14.7, 15.1 to 15.6 RBT: L1, L2, L3

Module 5 Contact Hours:10

Transaction Processing: Introduction to Transaction Processing, Transaction and System concepts, Desirable

properties of Transactions, Characterizing schedules based on recoverability, Characterizing schedules based on

Serializability, Transaction support in SQL. Concurrency Control in Databases: Two-phase locking techniques

for Concurrency control, Concurrency control based on Timestamp ordering, Multiversion Concurrency control

techniques, Validation Concurrency control techniques, Granularity of Data items and Multiple Granularity

Locking. Introduction to Database Recovery Protocols: Recovery Concepts, NO-UNDO/REDO recovery based

on Deferred update, Recovery techniques based on immediate update, Shadow paging, Database backup and

recovery from catastrophic failures

Textbook 1: 20.1 to 20.6, 21.1 to 21.7, 22.1 to 22.4, 22.7.

 RBT: L1, LCourse Outcomes: The student will be able to :

 Identify, analyze and define database objects, enforce integrity constraints on a database using

RDBMS.

 Use Structured Query Language (SQL) for database manipulation.

 Design and build simple database systems

 Develop application to interact with databases.
Question Paper Pattern:

 The question paper will have ten questions.

 Each full Question consisting of 20 marks

 There will be 2 full questions (with a maximum of four sub questions) from each module.

 Each full question will have sub questions covering all the topics under a module.

 The students will have to answer 5 full questions, selecting one full question from each module.
Textbooks:

1. Fundamentals of Database Systems, Ramez Elmasri and Shamkant B. Navathe, 7th Edition, 2017,
Pearson.

2. Database management systems, Ramakrishnan, and Gehrke, 3
rd

 Edition, 2014, McGraw Hill
Reference Books:

1. Silberschatz Korth and Sudharshan, Database System Concepts, 6
th
 Edition, Mc-GrawHill, 2013.

2. Coronel, Morris, and Rob, Database Principles Fundamentals of Design, Implementation and

Management, Cengage Learning 2012.

MODULE-1

Introduction to Databases

1.1 Introduction

A database is a collection of related data .By data, we mean known facts that can be

recorded and that have implicit meaning. For example, consider the names, telephone numbers,

and addresses of the people you know. This is a collection of related data with an implicit

meaning and hence is a database.

A database management system (DBMS) is a collection of programs that enables users to

create and maintain a database. The DBMS is hence a general-purpose software system that

facilitates the processes of defining, constructing, and manipulating databases for various

applications.

 Defining a database involves specifying the data types, structures, and constraints for the

data to be stored in the database.

 Constructing the database is the process of storing the data itself on some storage

medium that is controlled by the DBMS.

 Manipulating a database includes such functions as querying the database to retrieve

specific data, updating the database to reflect changes in the miniworld, and generating

reports from the data.

 Sharing a database allows multiple users and programs to access the database
simultaneously.

 Application programs access the database by sending queries or request for data to the
DBMS.A query causes some data to be retrieved

 Other important function provided by DBMS include protecting and maintaining it over long

Fig 1.1: A simplified database system environment.

1.3 Characteristics of the Database Approach

1.3.1 Self-Describing Nature of a Database System

1.3.2 Insulation between Programs and Data, and Data Abstraction

1.3.3 Support of Multiple Views of the Data

1.3.4 Sharing of Data and Multiuser Transaction Processing

The main characteristics of the database approach versus the file-processing approach are the

following.

1.3.1 Self-Describing Nature of a Database System

A fundamental characteristic of the database approach is that the database system contains not

only the database itself but also a complete definition or description of the database structure and

constraints. This definition is stored in the system catalog, which contains information such as

the structure of each file, the type and storage format of each data item, and various constraints

on the data. The information stored in the catalog is called meta-data, and it describes the

structure of the primary database.

1.3.2 Insulation between Programs and Data, and Data Abstraction

In traditional file processing, the structure of data files is embedded in the access

programs, so any changes to the structure of a file may require changing all programs that access

this file.

By contrast, DBMS access programs do not require such changes in most cases. The

structure of data files is stored in the DBMS catalog separately from the access programs. We

call this property program-data independence.

In object-oriented and object-relational databases users can define operations on data as part of

the database definitions.

An operation (also called a function) is specified in two parts. The interface (or signature) of an
operation includes the operation name and the data types of its arguments (or parameters).

An operation (also called a function) is specified in two parts. The interface (or signature) of an
operation includes the operation name and the data types of its arguments (or parameters).

The implementation (or method) of the operation is specified separately and can be changed

without affecting the interface.

Application programs can operate on the data by invoking these operations through their names

and arguments, regardless of how the operations are implemented. This may be termed

program-operation independence.

The characteristic that allows program-data independence and program-operation
independence is called data abstraction.

A data model is a type of data abstraction that is used to provide this conceptual

representation.

1.3.3 Support of Multiple Views of the Data

A database typically has many users, each of whom may require a different perspective

or view of the database. A view may be a subset of the database or it may contain virtual data

that is derived from the database files but is not explicitly stored.

1.3.4 Sharing of Data and Multiuser Transaction Processing

A multiuser DBMS, as its name implies, must allow multiple users to access the database

at the same time. This is essential if data for multiple applications is to be integrated and

maintained in a single database. The DBMS must include concurrency control software to

ensure that several users trying to update the same data do so in a controlled manner so that the

result of the updates is correct. For example, when several reservation clerks try to assign a seat

on an airline flight, the DBMS should ensure that each seat can be accessed by only one clerk at

a time for assignment to a passenger. These types of applications are generally called on-line

transaction processing (OLTP) applications.

1.4 Actors on the Scene

1.4.1 Database Administrators

1.4.2 Database Designers

1.4.3 End Users

1.4.4 System Analysts and Application Programmers (Software Engineers)

1.4.1 Database Administrators

. In a database environment, the primary resource is the database itself and the secondary

resource is the DBMS and related software. Administering these resources is the responsibility of

the database administrator (DBA). The DBA is responsible for authorizing access to the

database, for coordinating and monitoring its use, and for acquiring software and hardware

resources as needed.

1.4.2 Database Designers

Database designers are responsible for identifying the data to be stored in the database

and for choosing appropriate structures to represent and store this data.

1.4.3 End Users

End users are the people whose jobs require access to the database for querying, updating,

and generating reports; the database primarily exists for their use. There are several categories of

end users:

• Casual end users occasionally access the database, but they may need different

information each time. They use a sophisticated database query language to specify their

requests and are typically middle- or high-level managers or other occasional browsers.

• Naive or parametric end users make up a sizable portion of database end users. Their

main job function revolves around constantly querying and updating the database,

using standard types of queries and updates—called canned transactions—that have

been carefully programmed and tested.

Bank tellers check account balances and post withdrawals and deposits.

• Sophisticated end users include engineers, scientists, business analysts, and others who

thoroughly familiarize themselves with the facilities of the DBMS so as to implement

their applications to meet their complex requirements.

• Stand-alone users maintain personal databases by using ready-made program packages

that provide easy-to-use menu- or graphics-based interfaces. An example is the user of a

tax package that stores a variety of personal financial data for tax purposes.

•

1.4.4 System Analysts and Application Programmers (Software Engineers)

System analysts determine the requirements of end users, especially naive and

parametric end users, and develop specifications for canned transactions that meet these

requirements. Application programmers implement these specifications as programs;

then they test, debug, document, and maintain these canned transactions.

1.5 Workers behind the Scene

In addition to those who design, use, and administer a database, others are

associated with the design, development, and operation of the DBMS software and

system environment. These persons are typically not interested in the database itself. We

call them the "workers behind the scene," and they include the following categories.

DBMS system designers and implementers are persons who design and implement the

DBMS modules and interfaces as a software package.

Tool developers include persons who design and implement tools—the software packages

that facilitate database system design and use, and help improve performance. They

include packages for database design, performance monitoring, natural language or

graphical interfaces, prototyping, simulation, and test data generation .

Operators and maintenance personnel are the system administration personnel who are

responsible for the actual running and maintenance of the hardware and software

environment for the database system.

1.6 Advantages of Using a DBMS

1.6.1 Controlling Redundancy

1.6.2 Restricting Unauthorized Access

1.6.3 Providing Persistent Storage for Program Objects and Data Structures

1.6.4 Permitting Inferencing and Actions Using Rules

1.6.5 Providing Multiple User Interfaces

1.6.6 Representing Complex Relationships Among Data

1.6.7 Enforcing Integrity Constraints

1.6.8 Providing Backup and Recovery

1.6.9 Additional Implications of the Database Approach

1.6.1 Controlling Redundancy

The file based data management systems contained multiple files that were stored in many

different locations in a system or even across multiple systems. Because of this, there were

sometimes multiple copies of the same file which lead to data redundancy. This is prevented in a

database as there is a single database and any change in it is reflected immediately. Because of

this, there is no chance of encountering duplicate data.

1.6.2 Restricting Unauthorized Access

When multiple users share a database, it is likely that some users will not be authorized to

access all information in the database. For example, financial data is often considered

confidential, and hence only authorized persons are allowed to access such data.

1.6.3 Providing Persistent Storage for Program Objects and Data Structures

Databases can be used to provide persistent storage for program objects and data

structures. This is one of the main reasons for the emergence of the object-oriented database

systems. Programming languages typically have complex data structures, such as record types in

PASCAL or class definitions in C++. The values of program variables are discarded once a

program terminates.

The persistent storage of program objects and data structures is an important function of database

systems. Traditional database systems often suffered from the so-called impedance mismatch

problem, since the data structures provided by the DBMS were incompatible with the

programming language’s data structures. Object-oriented database systems typically offer data

structure compatibility with one or more object-oriented programming languages.

1.6.4 Permitting Inferencing and Actions Using Rules

Some database systems provide capabilities for defining deduction rules for inferencing new

information from the stored database facts. Such systems are called deductive database

systems. For example, there may be complex rules in the mini world application for determining

when a student is on probation.

1.6.5 Providing Multiple User Interfaces

Because many types of users with varying levels of technical knowledge use a database, a DBMS

should provide a variety of user interfaces. These include query languages for casual users; programming

language interfaces for application programmers; forms and command codes for parametric users; and

menu-driven interfaces and natural language interfaces for stand-alone users. Both forms-style interfaces

and menu-driven interfaces are commonly known as graphical user interfaces (GUIs).

1.6.6 Representing Complex Relationships Among Data

A database may include numerous varieties of data that are interrelated in many ways. A

DBMS must have the capability to represent a variety of complex relationships among the data

as well as to retrieve and update related data easily and efficiently.

1.6.7 Enforcing Integrity Constraints

Most database applications have certain integrity constraints that must hold for the data.

A DBMS should provide capabilities for defining and enforcing these constraints. The simplest

type of integrity constraint involves specifying a data type for each data item.

1.6.8 Providing Backup and Recovery

A DBMS must provide facilities for recovering from hardware or software failures. The

backup and recovery subsystem of the DBMS is responsible for recovery.

1.8 When Not to Use a DBMS

In spite of the advantages of using a DBMS, there are a few situations in which such a

system may involve unnecessary overhead costs as that would not be incurred in traditional file

processing. The overhead costs of using a DBMS are due to the following:

• High initial investment in hardware, software, and training.

• Generality that a DBMS provides for defining and processing data.

• Overhead for providing security, concurrency control, recovery, and integrity functions.

Chapter 2: Database System Concepts and

Architecture

A data model—a collection of concepts that can be used to describe the structure of a database.

By structure of a database we mean the data types, relationships, and constraints that should

hold on the data.

Most data models also include a set of basic operations for specifying retrievals and updates on
the database.

This allows the database designer to specify a set of valid user-defined operations that are

allowed on the database objects .An example of a user-defined operation could be

COMPUTE_GPA, which can be applied to a STUDENT object.

2.1.1 Categories of Data Models

A) High-level or conceptual data models provide concepts that are close to the way

many users perceive data.

Conceptual data model use concepts such as entities, attributes and relationship

An entity represents a real-world object or concept, such as an employee or a project, that is

described in the database.

An attribute represents some property of interest that further describes an entity, such as the
employee’s name or salary.

A relationship among two or more entities represents an interaction among the entities; for

example, a works-on relationship between an employee and a project. Representational or

implementation data models are the models used most frequently in traditional commercial

DBMSs, and they include the widely-used relational data model.

B) Low-level or physical data models provide concepts that describe the details of how

data is stored in the computer.

C) Representational (or implementation) data models, which provide concepts that may be

understood by end users but that are not too far removed from the way data is organized within

the computer.

Representational data models represent data by using record structures and hence are sometimes

called record-based data models.

Representational or implementation data models are the models used most frequently in

traditional commercial DBMSs, and they include the widely-used relational data model. As well

as in Legacy data models—the network and hierarchical models.

2.1.2 Schemas, Instances, and Database State

In any data model it is important to distinguish between the description of the database and the

database itself.

The description of a database is called the database schema, which is specified during database

design and is not expected to change frequently.

A displayed schema is called a schema diagram.

A schema diagram displays only some aspects of a schema, such as the names of record types
and data items, and some types of constraints.

The data in the database at a particular moment in time is called a database state or snapshot. It
is also called the current set of occurrences or instances in the database

2.2 DBMS Architecture and Data Independence

An architecture for database systems, called the three-schema architecture which

was proposed to help achieve and visualize the DBMS characteristics.

2.2.1 The Three-Schema Architecture

Proposed to support DBMS characteristics of:

 Program-data independence.

 Support of multiple views of the data.

 Not explicitly used in commercial DBMS products, but has been useful in explaining
database system organization.

The goal of the three-schema architecture, illustrated in Figure.

1. The internal level has an internal schema, which describes the physical storage

structure of the database. The internal schema uses a physical data model and

describes the complete details of data storage and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the structure of the

whole database for a community of users. The conceptual schema hides the details of

physical storage structures and concentrates on describing entities, data types,

relationships, user operations, and constraints. A high-level data model or an
implementation data model can be used at this level.

3. The external or view level includes a number of external schemas or user views. Each

external schema describes the part of the database that a particular user group is

interested in and hides the rest of the database from that user group. A high-level data

model or an implementation data model can be used at this level.

The processes of transforming requests and results between levels are called mappings. These

mappings may be time-consuming, so some DBMSs—especially those that are meant to support

small databases—do not support external views.

2.2.2 Data Independence

The three-schema architecture can be used to explain the concept of data independence, which

can be defined as the capacity to change the schema at one level of a database system without

having to change the schema at the next higher level. We can define two types of data

independence:

1. Logical data independence is the capacity to change the conceptual schema without

having to change external schemas or application programs. We may change the

conceptual schema to expand the database (by adding a record type or data item), or to

reduce the database (by removing a record type or data item).

2. Physical data independence is the capacity to change the internal schema without

having to change the conceptual (or external) schemas. Changes to the internal schema

may be needed because some physical files had to be reorganized—for example, by

creating additional access structures—to improve the performance of retrieval or update.

If the same data as before remains in the database, we should not have to change the

conceptual schema.

2.3 Database Languages and Interfaces

2.3.1 DBMS Languages

 Data definition language (DDL) is used by the DBA and by database designers to

define both schemas. The DBMS will have a DDL compiler whose function is to

process DDL statements in order to identify descriptions of the schema constructs and

to store the schema description in the DBMS catalog. the DDL is used to specify the

conceptual schema only.

 Storage definition language (SDL) is used to specify the internal schema. The

mappings between the two schemas may be specified in either one of these languages.

 View definition language (VDL) is used to specify user views and their mappings to

the conceptual schema, but in most DBMSs the DDL is used to define both

conceptual and external schemas.

 Data manipulation language (DML) The DBMS provides a data manipulation

language (DML) for these purposes. There are two main types of DMLs. A high-

level or nonprocedural DML can be used on its own to specify complex database

operations in a concise manner. A low-level or procedural DML must be embedded

in a general-purpose programming language.

2.3.2 DBMS Interfaces

Menu-Based Interfaces for Browsing

These interfaces present the user with lists of options, called menus, that lead the user

through the formulation of a request. They are often used in browsing interfaces, which

allow a user to look through the contents of a database in an exploratory and unstructured

manner.

Forms-Based Interfaces

A forms-based interface displays a form to each user. Users can fill out all of the form

entries to insert new data, or they fill out only certain entries, in which case the DBMS will

retrieve matching data for the remaining entries.

Graphical User Interfaces

A graphical interface (GUI) typically displays a schema to the user in diagrammatic form.

Natural Language Interfaces

These interfaces accept requests written in English or some other language and attempt to

"understand" them. A natural language interface usually has its own "schema," which is

similar to the database conceptual schema. The natural language interface refers to the words

in its schema, as well as to a set of standard words, to interpret the request.

Interfaces for Parametric Users

Parametric users, such as bank tellers, often have a small set of operations that they must

perform repeatedly. Systems analysts and programmers design and implement a special

interface for a known class of naive users. Usually, a small set of abbreviated commands is

included, with the goal of minimizing the number of keystrokes required for each request

Interfaces for the DBA

Most database systems contain privileged commands that can be used only by the DBA’s

staff. These include commands for creating accounts, setting system parameters, granting

account authorization, changing a schema, and reorganizing the storage structures of a

database.

2.4 The Database System Environment

The database and the DBMS catalog are usually stored on disk. Access to the disk is controlled

primarily by the operating system (OS), which schedules disk input/output. A higher-level

stored data manager module of the DBMS controls access to DBMS information that is stored

on disk, whether it is part of the database or the catalog.

The DDL compiler processes schema definitions, specified in the DDL, and stores descriptions

of the schemas (meta-data) in the DBMS catalog. The catalog includes information such as the

names of files, data items, storage details of each file and so on.

The run-time database processor handles database accesses at run time; it receives retrieval or

update query compiler handles high-level queries that are entered interactively. It parses,

analyzes, and compiles or interprets a query by creating database access code, and then generates

calls to the run-time processor for executing the code.

The pre-compiler extracts DML commands from an application program written in a host

programming language. These commands are sent to the DML compiler for compilation into

object code for database access. The rest of the program is sent to the host language compiler.

The object codes for the DML commands and the rest of the program are linked, forming a

canned transaction whose executable code includes calls to the runtime database processor.

2.4.2 Database System Utilities

Most DBMSs have database utilities that help the DBA in managing the database system.

Common utilities have the following types of functions:

1. Loading: A loading utility is used to load existing data files—such as text files or sequential

files—into the database. Usually, the current (source) format of the data file and the desired

(target) database file structure are specified to the utility.

2. Backup: A backup utility creates a backup copy of the database, usually by dumping the entire

database onto tape. The backup copy can be used to restore the database in case of catastrophic

failure. Incremental backups are also often used, where only changes since the previous backup

are recorded. Incremental backup is more complex but it saves space.

3. File reorganization: This utility can be used to reorganize a database file into a

different file organization to improve performance.

4. Performance monitoring: Such a utility monitors database usage and provides statistics to the

DBA. The DBA uses the statistics in making decisions such as whether or not to reorganize files

to improve performance

Chapter 3: Data Modeling Using the Entity

Relationship Model

Conceptual modeling is an important phase in designing a successful database

application. Generally, the term database application refers to a particular database—for

example, a BANK database that keeps track of customer accounts—and the associated programs

that implement the database queries and updates—for example, programs that implement

database updates corresponding to customers making deposits and withdrawals. These programs

often provide user-friendly graphical user interfaces (GUIs) utilizing forms and menus. Hence,

part of the database application will require the design, implementation, and testing of these

application programs.

Database design methodologies attempt to include more of the concepts for specifying

operations on database objects, and as software engineering methodologies specify in more detail

the structure of the databases that software programs will use and access, it is certain that this

commonality will increase .

Entity-Relationship (ER) model, which is a popular high-level conceptual data model.

This model and its variations are frequently used for the conceptual design of database

applications, and many database design tools employ its concepts. We describe the basic data-

structuring concepts and constraints of the ER model and discuss their use in the design of

conceptual schemas for database applications.

2 An Example Database Application

In this section we describe an example database application, called COMPANY, which serves

to illustrate the ER model concepts and their use in schema design.

1. The company is organized into departments. Each department has a unique name, a

unique number, and a particular employee who manages the department. We keep

track of the start date when that employee began managing the department. A

department may have several locations.

2. A department controls a number of projects, each of which has a unique name, a

unique number, and a single location.

3. We store each employee’s name, social security number (Note 1), address, salary, sex, and

birth date. An employee is assigned to one department but may work on several projects,

which are not necessarily controlled by the same department. We keep track of the

number of hours per week that an employee works on each project. We also keep track of

the direct supervisor of each employee.

4. We want to keep track of the dependents of each employee for insurance

purposes. We keep each dependent’s first name, sex, birth date, and relationship

to the employee.

3 Entity Types, Entity Sets, Attributes, and Keys

The ER model describes data as entities, relationships, and attributes.

Entities

The basic object that the ER model represents is an entity, which is a "thing" in the real

world with an independent existence. An entity may be an object with a physical existence—a

particular person, car, house, or employee—or it may be an object with a conceptual existence— a
company, a job, or a university course.

Attributes : Each entity has attributes—the particular properties that describe it. For example,

an employee entity may be described by the employee’s name, age, address, salary, and job.

A particular entity will have a value for each of its attributes. The attribute values that

describe each entity become a major part of the data stored in the database.

Ex:
1) The employee entity E1 has four attributes: Name, Address, Age, and HomePhone;

their values are "John Smith," "2311 Kirby, Houston, Texas 77001," "55," and "713-749-

2630," respectively.

Several types of attributes occur in the ER model:

1) simple versus composite

2) single-valued versus multi valued

3) stored versus derived.

1) Composite attributes can be divided into smaller subparts, which represent more basic

attributes with independent meanings.

Ex: Address attribute of the employee entity can be sub-divided into StreetAddress, City, State,
and Zip with the values "2311 Kirby," "Houston," "Texas," and "77001."

Composite attributes can form a hierarchy; for example, StreetAddress can be subdivided into

three simple attributes, Number, Street, and ApartmentNumber, as shown in Figure .The value of

a composite attribute is the concatenation of the values of its constituent simple attributes.

2) Simple or Atomic attributes :

Attributes that are not divisible are called simple or atomic attributes.

EX: Number, street are simple attributes

Single-valued

Most attributes have a single value for a particular entity; such attributes are called

single-valued.

4) EX: Age is a single-valued attribute of person. Multivalued Attributes

In some cases an attribute can have a set of values for the same entity—
for example, a Colors attribute for a car, or a CollegeDegrees attribute for a person.

Cars with one color have a single value, whereas two -tone cars have two values for

Colors.

A multivalued attribute may have lower and upper bounds on the number of values

allowed for each individual entity.

Ex: The Colors attribute of a car may have between one and three values, if we assume

that a car can have at most three colors.

5) Stored Versus Derived Attributes
In some cases two (or more) attribute values are related—for example, the Age and BirthDate attributes of a person.

For a particular person entity, the value of Age can be determined from the current (today’s) date and the value of

that person’s BirthDate. The Age attribute is hence called a derived attribute and is said to be derivable from the

BirthDate attribute, which is called a stored attribute.

6) Null Values

In some cases a particular entity may not have an applicable value for an attribute. For example,

the ApartmentNumber attribute of an address applies only to addresses that are in apartment

buildings and not to other types of residences, such as single-family homes. For such situations, a

special value called null is created. An address of a single-family home would have null for its

ApartmentNumber attribute. Null can also be used if we do not know the value of an attribute for

a particular entity—for example, if we do not know the home phone of "John Smith" .The

meaning of the former type of null is not applicable, whereas the meaning of the latter is

unknown.

The unknown category of null can be further classified into two cases. The first case arises

when it is known that the attribute value exists but is missing—for example, if the Height

attribute of a person is listed as null.

The second case arises when it is not known whether the attribute value exists—for example, if

the HomePhone attribute of a person is null.

7) Complex Attributes

Notice that composite and multivalued attributes can be nested in an arbitrary way. We

can represent arbitrary nesting by grouping components of a composite attribute between

parentheses () and separating the components with commas, and by displaying multivalued

attributes between braces {}. Such attributes are called complex attributes.

1) For example, PreviousDegrees of a STUDENT is a composite multi-valued

attribute denoted by {PreviousDegrees (College, Year, Degree, Field)}

2) If a person can have more than one residence and each residence can have multiple

phones, an attribute AddressPhone for a PERSON entity type can be specified as complex

attribute.

.

Entity Types

A database usually contains groups of entities that are similar. For example, a company

employing hundreds of employees may want to store similar information concerning each of the

employees. These employee entities share the same attributes, but each entity has its own

value(s) for each attribute.

An entity type defines a collection (or set) of entities that have the same attributes.

Each entity type in the database is described by its name and attributes.

Ex: Two entity types, named EMPLOYEE and COMPANY, and

a list of attributes for each. Entity Sets

The collection of all entities of a particular entity type in the database at any point in

time is called an entity set.

The entity set is usually referred to using the same name as the entity type. For example,

EMPLOYEE refers to both a type of entity as well as the current set of all employee entities in

the database.

An entity type is represented in ER diagrams as a rectangular box enclosing the entity

type name. Attribute names are enclosed in ovals and are attached to their entity type by straight

lines. Composite attributes are attached to their component attributes by straight lines.

Multivalued attributes are displayed in double ovals.

An entity type describes the schema or intension for a set of entities that share the same

structure. The collection of entities of a particular entity type are grouped into an entity set,

which is also called the extension of the entity type.

Key Attributes of an Entity Type

An important constraint on the entities of an entity type is the key or uniqueness

constraint on attributes. An entity type usually has an attribute whose values are distinct for

each individual entity in the collection. Such an attribute is called a key attribute, and its values

can be used to identify each entity uniquely.

Ex: 1)The Name attribute is a key of the COMPANY entity type , because no two

companies are allowed to have the same name.

2)For the Student entity type, a typical key attribute is University Student Number.

Sometimes, several attributes together form a key, meaning that the combination of the

attribute values must be distinct for each entity. If a set of attributes possesses this property, we

can define a composite attribute that becomes a key attribute of the entity type.

In ER diagrammatic notation, each key attribute has its name underlined inside the oval.

Specifying that an attribute is a key of an entity type means that the preceding uniqueness

property must hold for every extension of the entity type. Hence, it is a constraint that prohibits

any two entities from having the same value for the key attribute at the same time.

Some entity types have more than one key attribute.

For example, each of the VehicleID and Registration attributes of the entity type CAR is

a key in its own right. The Registration attribute is an example of a composite key formed from

two simple component attributes, RegistrationNumber and State, neither of which is a key on its

own. An entity type may also have no key, in which case it is called a weak entity type .

Value Sets (Domains) of Attributes

Each simple attribute of an entity type is associated with a value set (or domain of

values), which specifies the set of values that may be assigned to that attribute for each

individual entity. Ex: The range of ages allowed for employees is between 16 and 70, we can

specify the value set of the Age attribute of EMPLOYEE to be the set of integer numbers

between 16 and 70.

Similarly, we can specify the value set for the Name attribute as being the set of strings

of alphabetic characters separated by blank characters and so on. Value sets are not displayed in

ER diagrams.

Relationships, Relationship Types, Roles, and Structural Constraints

There are several implicit relationships among the various entity types. In fact, whenever

an attribute of one entity type refers to another entity type, some relationship exists.

For example, the attribute Manager of DEPARTMENT refers to an employee who

manages the department. In the ER model, these references should not be represented as

attributes but as relationships.

4.1 Relationship Types, Sets and Instances

A relationship type R among n entity types , , . . ., defines a set of associations—or a

relationship set— among entities from these types. As for entity types and entity sets, a

relationship type and its corresponding relationship set are customarily referred to by the same

name R. Mathematically, the relationship set R is a set of relationship instances .

Informally, each relationship instance in R is an association of entities, where the

association includes exactly one entity from each participating entity type. Each such

relationship instance represents the fact that the entities participating in are related in some way

in the corresponding miniworld situation.

For example, consider a relationship type WORKS_FOR between the two entity types

EMPLOYEE and DEPARTMENT, which associates each employee with the department the

employee works for. Each relationship instance in the relationship set WORKS_FOR associates

one employee entity and one department entity.

The above figure illustrates this example, where each relationship instance is shown connected to

the employee and department entities that participate in . Employees e1, e3, and e6 work for

department d1; e2 and e4 work for d2; and e5 and e7 work for d3.

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which

are connected by straight lines to the rectangular boxes representing the participating entity

types. The relationship name is displayed in the diamond-shaped box .

4.2 Degree of a Relationship Type

The degree of a relationship type is the number of participating entity types. Hence, the

WORKS_FOR relationship is of degree two. A relationship type of degree two is called binary,

and one of degree three is called ternary.

An example of a ternary relationship is SUPPLY, shown in above Figure . where each

relationship instance associates three entities—a supplier s, a part p, and a project j—whenever s

supplies part p to project j. Relationships can generally be of any degree, but the ones most

common are binary relationships. Higher-degree relationships are generally more complex than

binary relationships.

Relationships as Attributes

It is sometimes convenient to think of a relationship type in terms of attributes. One can

think of an attribute called Department of the EMPLOYEE entity type whose value for each

employee entity is (a reference to) the department entity that the employee works for.

Role Names and Recursive Relationships

Each entity type that participates in a relationship type plays a particular role in the

relationship. The role name signifies the role that a participating entity from the entity type plays

in each relationship instance, and helps to explain what the relationship means.

For example, in the WORKS_FOR relationship type, EMPLOYEE plays the role of

employee or worker and DEPARTMENT plays the role of department or employer.

Role names are not technically necessary in relationship types where all the participating

entity types are distinct, since each entity type name can be used as the role name. However, in

some cases the same entity type participates more than once in a relationship type in different

roles. In such cases the role name becomes essential for distinguishing the meaning of each

participation. Such relationship types are called recursive relationships.

The above figure shows an example. The SUPERVISION relationship type relates an

employee to a supervisor, where both employee and supervisor entities are members of the same

EMPLOYEE entity type. Hence, the

EMPLOYEE entity type participates twice in SUPERVISION: once in the role of supervisor (or

boss), and once in the role of supervisee (or subordinate).

Each relationship instance in SUPERVISION associates two employee entities ej and ek, one of

which plays the role of supervisor and the other the role of supervisee.

In the above figure the lines marked "1" represent the supervisor role, and those marked

"2" represent the supervisee role; hence, e1 supervises e2 and e3; e4 supervises e6 and e7; and e5

supervises e1 and e4.

4.3 Constraints on Relationship Types

Cardinality Ratios for Binary Relationships Participation Constraints and Existence

Dependencies.Relationship types usually have certain constraints that limit the possible

combinations of entities that may participate in the corresponding relationship set. These

constraints are determined from the mini world situation that the relationships represent.

For example, if the company has a rule that each employee must work for exactly one

department, then we would like to describe this constraint in the schema. We can distinguish two

main types of relationship constraints: cardinality ratio and participation.

Cardinality Ratios for Binary Relationships

Cardinality ratio :

Cardinality ratio for a binary relationship specifies the number of relationship instances that an

entity can participate in.

For example, in the WORKS_FOR binary relationship type,

DEPARTMENT:EMPLOYEE is of cardinality ratio 1:N, meaning that each department can be

related to numerous employees but an employee can be related to only one department.

The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1, and M:N

An example of a 1:1 binary relationship is MANAGES which relates a department entity to the

employee who manages that department. This represents the miniworld constraints that an

employee can manage only one department and that a department has only one manager.

The relationship type WORKS_ON is of cardinality ratio M:N, because the miniworld rule is

that an employee can

work on several projects and a project can have several
employees.

Cardinality ratios for binary relationships are displayed on ER diagrams by displaying

1, M, and N on the diamonds .

Participation Constraints and Existence Dependencies

The participation constraint specifies whether the existence of an entity depends on its

being related to another entity via the relationship type. There are two types of participation

constraints—total and partial—which we illustrate by example.

a) If a company policy states that every employee must work for a department, then an

employee entity can exist only if it participates in a WORKS_FOR relationship instance .Thus,

the participation of EMPLOYEE in WORKS_FOR is called total participation, meaning that

every entity in "the total set" of employee entities must be related to a department entity via

WORKS_FOR. Total participation is also called existence dependency.

b) we do not expect every employee to manage a department, so the participation of

EMPLOYEE in the MANAGES relationship type is partial, meaning that some or "part of the

set of" employee entities are related to a department entity via MANAGES, but not necessarily

all.

structural constraints

cardinality ratio and participation constraints, taken together, as the structural

constraints of a relationship

type.In ER diagrams, total participation is displayed as a double line connecting the participating
entity type to the relationship, whereas partial participation is represented by a single line .

Attributes of Relationship Types

Relationship types can also have attributes, similar to those of entity types. For example,

to record the number of hours per week that an employee works on a particular project, we can

include an attribute Hours for the WORKS_ON relationship type .

Another example is to include the date on which a manager started managing a
department via an attribute StartDate for the MANAGES relationship type .

Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the

participating entity types. For example, the StartDate attribute for the MANAGES relationship

can be an attribute of either EMPLOYEE or

DEPARTMENT—although conceptually it belongs to MANAGES. This is because MANAGES

is a 1:1 relationship, so every department or employee entity participates in at most one

relationship instance. Hence, the value of the StartDate attribute can be determined separately,

either by the participating department entity or by the participating employee (manager) entity.

For a 1:N relationship type, a relationship attribute can be migrated only to the entity type

at the N-side of the relationship. For example if the WORKS_FOR relationship also has an

attribute StartDate that indicates when an employee started working for a department, this

attribute can be included as an attribute of EMPLOYEE. This is because each employee entity

participates in at most one relationship instance in WORKS_FOR. In both 1:1 and 1:N

relationship types, the decision as to where a relationship attribute should be placed—as a

relationship type attribute or as an attribute of a participating entity type—is determined

subjectively by the schema designer.

For M:N relationship types, some attributes may be determined by the combination of

participating entities in a relationship instance, not by any single entity. Such attributes must be

specified as relationship attributes. An example is the Hours attribute of the M:N relationship

WORKS_ON . the number of hours an employee works on a project is determined by an

employee-project combination and not separately by either entity.

5 Weak Entity Types

Entity types that do not have key attributes of their own are called weak entity types. In

contrast, regular entity types that do have a key attribute are sometimes called strong entity

types. Entities belonging to a weak entity type are identified by being related to specific entities

from another entity type in combination with some of their attribute values. We call this other

entity type the identifying or owner entity type and we call the relationship type that relates a

weak entity type to its owner the identifying relationship of the weak entity type ..A weak

entity type always has a total participation constraint (existence dependency) with respect to its

identifying relationship, because a weak entity cannot be identified without an owner entity.

Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep

track of the dependents of each employee via a 1:N relationship .The attributes of DEPENDENT

are Name (the first name of the dependent), BirthDate, Sex, and Relationship (to the employee).

Two dependents of two distinct employees may, by chance, have the same values for Name,

BirthDate, Sex, and Relationship, but they are still distinct entities. They are identified as distinct

entities only after determining the particular employee entity to which each dependent is related.

Each employee entity is said to own the dependent entities that are related to it.

A weak entity type normally has a partial key, which is the set of attributes that can uniquely

identify weak entities that are related to the same owner entity .In our example, if we assume that

no two dependents of the same employee ever have the same first name, the attribute Name of

DEPENDENT is the partial key. In the worst case, a composite attribute of all the weak entity’s

attributes will be the partial key.

In ER diagrams, both a weak entity type and its identifying relationship are

distinguished by surrounding their boxes and diamonds with double lines. The partial key

attribute is underlined with a dashed or dotted line.

6 Refining the ER Design for the COMPANY Database

In our example, we specify the following relationship types:

1. MANAGES, a 1:1 relationship type between EMPLOYEE and DEPARTMENT.

EMPLOYEE participation is partial. DEPARTMENT participation is not clear

from the requirements. We question the users, who say that a department must

have a manager at all times, which implies total participation .The attribute

StartDate is assigned to this relationship type.

2. WORKS_FOR, a 1:N relationship type between DEPARTMENT and EMPLOYEE. Both

participations are total.

3. CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT. The

participation of PROJECT is total, whereas that of DEPARTMENT is determined to

be partial, after consultation with the users.

4. SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervisor

role) and EMPLOYEE (in the supervisee role). Both participations are

determined to be partial, after the users indicate that not every employee is a

supervisor and not every employee has a supervisor.

5. WORKS_ON, determined to be an M:N relationship type with attribute Hours,

after the users indicate that a project can have several employees working on it.

Both participations are determined to be total.

6. DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and

DEPENDENT, which is also the identifying relationship for the weak entity type

DEPENDENT. The participation of EMPLOYEE is partial, whereas that of

DEPENDENT is total.

Summary of Notation for ER Diagrams

In ER diagrams the emphasis is on representing the schemas rather than the instances. This is

more useful because a database schema changes rarely, whereas the extension changes

frequently. In addition, the schema is usually easier to display than the extension of a database,

because it is much smaller.

The below Figure displays the COMPANY ER database schema as an ER diagram.

Entity types such as EMPLOYEE, DEPARTMENT, and PROJECT are shown in

rectangular boxes. Relationship types such as WORKS_FOR, MANAGES, CONTROLS, and

WORKS_ON are shown in diamond-shaped boxes attached to the participating entity types with

straight lines. Attributes are shown in ovals, and each attribute is attached by a straight line to its

entity type or relationship type. Component attributes of a composite attribute are attached to the

oval representing the composite attribute, as illustrated by the Name attribute of EMPLOYEE.

Multivalued attributes are shown in double ovals, as illustrated by the Locations attribute of

DEPARTMENT. Key attributes have their names underlined. Derived attributes are shown in

dotted ovals, as illustrated by the NumberOfEmployees attribute of DEPARTMENT.

Weak entity types are distinguished by being placed in double rectangles and by having their
identifying relationship placed in double diamonds, as illustrated by the DEPENDENT

entity type and the DEPENDENTS_OF identifying relationship type. The partial key of the weak
entity type is underlined with a dotted line.

In Figure the cardinality ratio of each binary relationship type is specified by attaching a

1, M, or N on each participating edge. The cardinality ratio of DEPARTMENT: EMPLOYEE in

MANAGES is 1:1, whereas it is 1:N for

DEPARTMENT:EMPLOYEE in WORKS_FOR, and it is M:N for WORKS_ON. The

participation constraint is specified by a single line for partial participation and by double lines
for total participation (existence dependency).

In Figure we show the role names for the SUPERVISION relationship type because the

EMPLOYEE entity type plays both roles in that relationship. Notice that the cardinality is 1:N

from supervisor to supervisee because, on the one hand, each employee in the role of supervisee

has at most one direct supervisor, whereas an employee in the role of supervisor can supervise

zero or more employees.

Summary of notation for ER diagrams

Figure: ER diagram for the company schema, with structural constraints specified using

(min,max) notation and role names

The designer can optionally specify the domain of an attribute if desired, by

placing a colon (:) followed by the domain name or description.

Example: Name, Sex, and Bdate attributes of EMPLOYEE in above figure.

A composite attribute is modeled as a structured domain, as illustrated by the

name attribute of EMPLOYEE.

A multivalued attribute be modeled as a separate class, as illustrated

by the LOCATION class in above figure.

2.7 Specialization

Specialization is the process of defining a set of subclasses of an entity type; this entity

type is called the superclass of the specialization. The set of subclasses that forms a

specialization is defined on the basis of some distinguishing characteristic of the entities in

the superclass.

For example, the set of subclasses {SECRETARY, ENGINEER, TECHNICIAN} is a

specialization of the superclass EMPLOYEE that distinguishes among employee entities

based on the job type of each employee entity.

We may have several specializations of the same entity type based on different distinguishing

characteristics. For example, another specialization of the EMPLOYEE entity type may yield

the set of subclasses {SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}; this

specialization distinguishes among employees based on the method of pay. Figure 8.1shows

how we represent a specialization diagrammatically in an EER diagram.The subclasses that

define a specialization are attached by lines to a circle that represents the specialization, which

is connected in turn to the superclass. The subset symbol on each line connecting a subclass to

the circle indicates the direction of the superclass/subclass relationship. Attributes that apply

only to entities of a particular subclass—such as TypingSpeed of SECRETARY—are

attached to the rectangle representing that subclass. These are called specific attributes (or

local attributes) of the subclass.

2.8 Generalization

We can think of a reverse process of abstraction in which we suppress the differences

among several entity types, identify their common features, and generalize them into a

single superclassof which the original entity types are special subclasses.

For example,consider the entity types CAR and TRUCK shown in Figure 8.3(a).Because

they have several common attributes, they can be generalized into the entity type

VEHICLE,as shown in Figure 8.3(b).Both CAR and TRUCK are now subclasses of the

generalized superclass VEHICLE. We use the term generalization to refer to the process of

defining a generalized entity type from the given entity types. Notice that the generalization

process can be viewed as being functionally the inverse of the specialization process. Hence,

in Figure 8.3 we can view {CAR, TRUCK} as a specialization of VEHICLE, rather than

viewing VEHICLE as a generalization of CAR and TRUCK. Similarly, in Figure 8.1 we can

view EMPLOYEE as a generalization of SECRETARY,TECHNICIAN,and ENGINEER.A

diagrammatic notation to distinguish between generalization and specialization is used in

some design methodologies. An arrow pointing to the generalized superclass represents a

generalization, whereas arrows pointing to the specialized subclasses represent a

specialization. We will not use this notation because the decision as to which process is

followed in a particular situation is often subjective

.

MODULE 2

The Relational Data Model and Relational Database Constraints

and Relational Algebra

2.1 Relational Model Concepts

 Domain: A (usually named) set/universe of atomic values, where by "atomic" we mean
simply that, from the point of view of the database, each value in the domain is
indivisible (i.e., cannot be broken down into component parts).

Examples of domains (some taken from page 147):

o USA_phone_number: string of digits of
length ten o SSN: string of digits of length nine
o Name: string of characters beginning with an upper case letter
o GPA: a real number between 0.0 and 4.0
o Sex: a member of the set { female, male }
o Dept_Code: a member of the set { CMPS, MATH, ENGL, PHYS, PSYC, ... }

These are all logical descriptions of domains. For implementation purposes, it is
necessary to provide descriptions of domains in terms of concrete data types (or
formats) that are provided by the DBMS (such as String, int, boolean), in a manner
analogous to how programming languages have intrinsic data types.

 Attribute: the name of the role played by some value (coming from some domain) in the

context of a relational schema. The domain of attribute A is denoted dom(A).

 Tuple: A tuple is a mapping from attributes to values drawn from the respective domains
of those attributes. A tuple is intended to describe some entity (or relationship between
entities) in the miniworld.

As an example, a tuple for a PERSON entity might be

{ Name --> "Rumpelstiltskin", Sex --> Male, IQ --> 143 }

 Relation: A (named) set of tuples all of the same form (i.e., having the same set of

attributes). The term table is a loose synonym. (Some database purists would argue that a

table is "only" a physical manifestation of a relation.)

 Relational Schema: used for describing (the structure of) a relation. E.g., R(A1, A2, ..., An)

says that R is a relation with attributes A1, ... An. The degree of a relation is the number of
attributes it has, here n.

Example: STUDENT(Name, SSN, Address)

(See Figure 5.1, page 149, for an example of a STUDENT relation/table having
several tuples/rows.)

One would think that a "complete" relational schema would also specify the domain of
each attribute.

 Relational Database: A collection of relations, each one consistent with its

specified relational schema.

2.1.2 Characteristics of Relations

Ordering of Tuples: A relation is a set of tuples; hence, there is no order associated with them.
That is, it makes no sense to refer to, for example, the 5th tuple in a relation. When a relation is
depicted as a table, the tuples are necessarily listed in some order, of course, but you should
attach no significance to that order. Similarly, when tuples are represented on a storage device,
they must be organized in some fashion, and it may be advantageous, from a performance
standpoint, to organize them in a way that depends upon their content.

Ordering of Attributes: A tuple is best viewed as a mapping from its attributes (i.e., the names
we give to the roles played by the values comprising the tuple) to the corresponding values.
Hence, the order in which the attributes are listed in a table is irrelevant. (Note that,
unfortunately, the set theoretic operations in relational algebra (at least how E&N define them)
make implicit use of the order of the attributes. Hence, E&N view attributes as being arranged as
a sequence rather than a set.)

Values of Attributes: For a relation to be in First Normal Form, each of its attribute domains
must consist of atomic (neither composite nor multi-valued) values. Much of the theory
underlying the relational model was based upon this assumption. Chapter 10 addresses the issue
of including non-atomic values in domains. (Note that in the latest edition of C.J. Date's book, he
explicitly argues against this idea, admitting that he has been mistaken in the past.)

The Null value: used for don't know, not applicable.

Interpretation of a Relation: Each relation can be viewed as a predicate and each tuple in that
relation can be viewed as an assertion for which that predicate is satisfied (i.e., has value true)
for the combination of values in it. In other words, each tuple represents a fact. Example (see
Figure 5.1): The first tuple listed means: There exists a student having name Benjamin Bayer, having
SSN 305-61-2435, having age 19, etc.

Keep in mind that some relations represent facts about entities (e.g., students) whereas others
represent facts about relationships (between entities). (e.g., students and course sections).

The closed world assumption states that the only true facts about the miniworld are those
represented by whatever tuples currently populate the database.

2.1.3 Relational Model Notation:

 R(A1, A2, ..., An) is a relational schema of degree n denoting that there is a relation

R having as its attributes A1, A2, ..., An.

 By convention, Q, R, and S denote relation names.

 By convention, q, r, and s denote relation states. For example, r(R) denotes one possible
state of relation R. If R is understood from context, this could be written, more simply, as

r.

 By convention, t, u, and v denote tuples.

 The "dot notation" R.A (e.g., STUDENT.Name) is used to qualify an attribute name, usually

for the purpose of distinguishing it from a same-named attribute in a different relation

(e.g., DEPARTMENT.Name).

2.2 Relational Model Constraints and Relational Database Schemas
Constraints on databases can be categorized as follows:

inherent model-based: Example: no two tuples in a relation can be duplicates (because a relation

is a set of tuples
schema-based: can be expressed using DDL; this kind is the focus of this section.
application-based: are specific to the "business rules" of the miniworld and typically difficult or
impossible to express and enforce within the data model. Hence, it is left to application programs
to enforce.

Elaborating upon schema-based constraints:

2.2.1 Domain Constraints: Each attribute value must be either null (which is really a non-value)
or drawn from the domain of that attribute. Note that some DBMS's allow you to impose the not
null constraint upon an attribute, which is to say that that attribute may not have the (non-)value
null.

2.2.2 Key Constraints: A relation is a set of tuples, and each tuple's "identity" is given by the
values of its attributes. Hence, it makes no sense for two tuples in a relation to be identical
(because then the two tuples are actually one and the same tuple). That is, no two tuples may
have the same combination of values in their attributes.

Usually the miniworld dictates that there be (proper) subsets of attributes for which no two tuples
may have the same combination of values. Such a set of attributes is called a superkey of its
relation. From the fact that no two tuples can be identical, it follows that the set of all attributes
of a relation constitutes a superkey of that relation.

A key is a minimal superkey, i.e., a superkey such that, if we were to remove any of its attributes,
the resulting set of attributes fails to be a superkey.

Example: Suppose that we stipulate that a faculty member is uniquely identified by Name and
Address and also by Name and Department, but by no single one of the three attributes
mentioned. Then { Name, Address, Department } is a (non-minimal) superkey and each of {
Name, Address } and { Name, Department } is a key (i.e., minimal superkey).

Candidate key: any key! (Hence, it is not clear what distinguishes a key from a candidate key.)

Primary key: a key chosen to act as the means by which to identify tuples in a relation.

Typically, one prefers a primary key to be one having as few attributes as possible.

2.2.3 Relational Databases and Relational Database Schemas

A relational database schema is a set of schemas for its relations together with a set of
integrity constraints.

A relational database state/instance/snapshot is a set of states of its relations such that no
integrity constraint is violated.

2.2.4 Entity Integrity, Referential Integrity, and Foreign Keys

1. Domain constraints

Every domain must contain atomic values(smallest indivisible units) it means composite

and multi-valued attributes are not allowed.We perform datatype check here, which means when

we assign a data type to a column we limit the values that it can contain. Eg. If we assign the

datatype of attribute age as int, we cant give it values other then int datatype.

Domain constraints can be defined as the definition of a valid set of values for an

attribute.The data type of domain includes string, character, integer, time, date, currency, etc.

The value of the attribute must be available in the corresponding domain

Example:

Explanation:

In the above relation, Name is a composite attribute and Phone is a multi-values attribute, so it is
violating domain constraint.

2. Key Constraints or Uniqueness Constraints

These are called uniqueness constraints since it ensures that every tuple in the relation should be

unique. A relation can have multiple keys or candidate keys(minimal superkey), out of which we

choose one of the keys as primary key, we don’t have any restriction on choosing the primary

key out of candidate keys, but it is suggested to go with the candidate key with less number of

attributes. Null values are not allowed in the primary key, hence Not Null constraint is also a part

of key constraint.

Example:

3. Entity integrity constraints

The entity integrity constraint states that primary key value can't be null. This is because

the primary key value is used to identify individual rows in relation and if the primary

key has a null value, then we can't identify those rows. A table can contain a null value

other than the primary key field.

Explanation:

In the above relation, EID is made primary key, and the primary key cant take NULL values but

in the third tuple, the primary key is null, so it is a violating Entity Integrity constraints.

4. Referential Integrity Constraints

A referential integrity constraint is specified between two tables. In the Referential integrity

constraints, if a foreign key in Table 1 refers to the Primary Key of Table 2, then every value of

the Foreign Key in Table 1 must be null or be available in Table 2.

Explanation:

In the above, DNO of the first relation is the foreign key, and DNO in the second relation is the

primary key. DNO = 22 in the foreign key of the first table is not allowed since DNO = 22

is not defined in the primary key of the second relation. Therefore Referential integrity

constraints is violated here

2.3 Update Operations and Dealing with Constraint Violations.

For each of the update operations (Insert, Delete, and Update), we consider what kinds of

constraint violations may result from applying it and how we might choose to react.

2.3.1 Insert:

 Domain constraint violation: some attribute value is not of correct domain Domain

constraint gets violated only when a given value to the attribute does not appear in the

corresponding domain or in case it is not of the appropriate datatype.

 Entity integrity violation: key of new tuple is null On inserting NULL values to any

part of the primary key of a new tuple in the relation can cause violation of the Entity

integrity constraint.

 Key constraint violation: key of new tuple is same as existing one. On inserting a value

in the new tuple of a relation which is already existing in another tuple of the same
relation, can cause violation of Key Constraints.

 Referential integrity violation: On inserting a value in the foreign key of relation 1, for

which there is no corresponding value in the Primary key which is referred to in relation 2, in

such case Referential integrity is violated.

Ways of dealing with it: reject the attempt to insert! Or give user opportunity to try again with
different attribute values.

2.3.2 Delete:

On deleting the tuples in the relation, it may cause only violation of Referential integrity

constraints.

Referential Integrity Constraints :

It causes violation only if the tuple in relation 1 is deleted which is referenced by foreign key

from other tuples of table 2 in the database, if such deletion takes place then the values in the

tuple of the foreign key in table 2 will become empty, which will eventually violate Referential

Integrity constraint.

Solutions that are possible to correct the violation to the referential integrity due to deletion are

listed below:

1. Restrict –

Here we reject the deletion.

2. Cascade –

Here if a record in the parent table(referencing relation) is deleted, then the corresponding

records in the child table(referenced relation) will automatically be deleted.

3. Set null or set default –

Here we modify the referencing attribute values that cause violation and we either set

NULL or change to another valid value

2.3.3 Update:

 Key constraint violation: primary key is changed so as to become same as another

tuple's

 Referential integrity violation:

o foreign key is changed and new one refers to nonexistent tuple
o primary key is changed and now other tuples that had referred to this one violate

the constraint

2.3.4 Transactions: This concept is relevant in the context where multiple users and/or
application programs are accessing and updating the database concurrently. A transaction is a
logical unit of work that may involve several accesses and/or updates to the database (such as
what might be required to reserve several seats on an airplane flight). The point is that, even
though several transactions might be processed concurrently, the end result must be as though
the transactions were carried out sequentially. (Example of simultaneous withdrawals from same
checking account.)

The Relational Algebra

Relational algebra is a procedural query language. It gives a step by step process to obtain

the result of the query. It uses operators to perform queries.

2.4 Relational Operations:

2.4.1 SELECT ()

SELECT operation (denoted by):

The SELECT operation is used to choose a subset of the tuples from a relation that satisfies a
selection condition.

In general, the SELECT operation is denoted by

σ<selection condition>(R)
where the symbol σ (sigma) is used to denote the SELECT operator and the selection condition

is a Boolean expression (condition) specified on the attributes of relation R.

1) DNO=4(EMPLOYEE)

Selects tuples from EMPLOYEE where department no is 4

2 σ subject = “database” (Books)

Selects tuples from books where subject is 'database'.

3)σsubject = "database" and price =450 (Books)

Selects tuples from books where subject is 'database' and 'price' is 450.

4) Selects tuples from Customers where sales is greater than 50000

σ sales>50000(Customers)

5) Selects tuples from employee where dept no is 10 or 20

6) (DNO=4 AND SALARY>25000) OR DNO=5 (EMPLOYEE)

The Boolean expression specified in <selection condition> is made up of a
number of clauses of the form

<attribute name> <comparison op><constant Value>
or

<attribute name> <comparison op> <attribute name>

where <attribute name> is the name of an attribute of R, <comparison op> is

normally one of the operators {=, <, ≤, >, ≥, ≠}, and <constant value> is a constant

value from the attribute domain.

Clauses can be connected by the standard Boolean operators and, or, and not to
form a general selection condition.

For example, to select the tuples for all employees who either work in
department 4 and make over

$25,000 per year, or work in department 5 and make over $30,000, we
can specify the following SELECT operation:

σ(Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000)(EMPLOYEE)

In SQL, the SELECT condition is typically specified in the WHERE clause of a

query.

For example, the following operation:

σDno=4 AND Salary>25000 (EMPLOYEE)

would correspond to the following SQL query:

SELECT *
FROM EMPLOYEE

WHERE Dno=4 AND Salary>25000;

PROJECT operation (denoted by):

The PROJECT operation, on the otherhand, selects certain columns from the table and discards

the other columns.

The general form of the PROJECT operation is

π<attribute list>(R)

where π (pi) is the symbol used to represent the PROJECT operation, and <attribute list> is the
desired sublist of attributes from the attributes of relation R

Example:

NAME ,SALARY(EMPLOYEE)

Select name,salary from employee;

Π salary ,dob,deptno(employee)

The PROJECT operation removes any duplicate tuples, so the result of the PROJECT operation
is a set of distinct tuples, and hence a valid relation.

This is known as duplicate elimination. For example, consider the following PROJECT
operation:

π Sex, Salary(EMPLOYEE)

In SQL, the PROJECT attribute list is specified in the SELECT clause of a query. For example,
the following operation:

Π Sex, Salary(EMPLOYEE) would correspond to the following SQL query:

SELECT Sex, Salary FROM EMPLOYEE

Duplicate tuples are eliminated by the operation. Sequences of operations: Several operations can
be combined to form a relational algebra expression (query)

Example: Retrieve the names and salaries of employees

who work in department 4:

Retrieve the names ssn, deptno of employees who

salaries are greater than 10000 and less than 30000

Π name,ssn,deptno (σ(sal>10000 and sal<30000(Employee)))

π FNAME,LNAME,SALARY σ (DNO=4 (EMPLOYEE))

Alternatively, we specify explicit intermediate relations for each step:

DEPT4_EMP σ DNO=4(EMPLOYEE)

P π FNAME,LNAME,SALARY (DEPT4_EMPS)

Attributes can optionally be renamed in the resulting left-hand-side relation (this may
be required for some operations that will be presented later):

DEPT4_EMPS DNO=4(EMPLOYEE)

(FIRSTNAME,LASTNAME,SALARY) FNAME,LNAME,SALARY(DEPT4_EMPS)

2.5 Relational algebra operation Set theory Operations

Binary operations from mathematical set theory:

1. UNION: R1 U R2,

2. INTERSECTION: R1 R2,

3. SET DIFFERENCE: R1 – R2

4. CARTESIAN PRODUCT: R1 X R2.

For , , -, the operand relations R1(A1, A2, ..., An) and R2(B1, B2, ..., Bn) must have the same
number of attributes, and the domains of corresponding attributes must be compatible; that is,

dom(Ai) = dom(Bi) for i=1, 2, ..., n. This condition is called union compatibility. The resulting
relation for , , or - has the same attribute names as the first operand relation R1 (by convention).

CARTESIAN PRODUCT

R(A1, A2, ..., Am, B1, B2, ..., Bn) R1(A1, A2, ..., Am) X R2 (B1, B2, ..., Bn)

A tuple t exists in R for each combination of tuples t1 from R1 and

t2 from R2 such that:

t[A1, A2, ..., Am] = t1 and t[B1, B2, ..., Bn] = t2
If R1 has n1 tuples and R2 has n2 tuples, then R will have n1* n2 tuples.

CARTESIAN PRODUCT is a meaningless operation on its own. It can combine related tuples

from two relations if followed by the appropriate SELECT operation.

Example: Combine each DEPARTMENT tuple with the EMPLOYEE tuple of the manager.

DEP_EMP DEPARTMENT X EMPLOYEE

DEPT_MANAGER MGRSSN=SSN(DEP_EMP)

2.6 JOIN Operations

oin is a combination of a Cartesian product followed by a selection process. A Join operation pairs two

tuples from different relations, if and only if a given join condition is satisfied.

THETA JOIN:

Theta join combines tuples from different relations provided they satisfy the theta condition. The join
condition is denoted by the symbol θ.

Notation

R1 ⋈θ R2

R1 and R2 are relations having attributes (A1, A2, .., An) and (B1, B2,.. ,Bn) such that
the attributes don’t have anything in common, that is R1 ∩ R2 = Φ.

Theta join can use all kinds of comparison operators.

Example 1)S <- STUDENT ⋈Student.Std = Subject.Class SUBJECT

EQUIJOIN

When Theta join uses only equality comparison operator, it is said to be equijoin. The above
example corresponds to equijoin.

Example of using EQUIJOIN:

Retrieve each DEPARTMENT's name and its manager's name:

T DEPARTMENT ⋈MGRSSN = SSN EMPLOYEE

RESULT

< - DNAME,FNAME,LNAM (T)

NATURAL JOIN (*):

Natural join does not use any comparison operator. It does not concatenate the way a
Cartesian product does. We can perform a Natural Join only if there is at least one
common attribute that exists between two relations. In addition, the attributes must
have the same name and domain.

Natural join acts on those matching attributes where the values of attributes in both the
relations are same.

 Courses ⋈ HoD

Example: Retrieve each EMPLOYEE's name and the name of the DEPARTMENT he/she works
for:

Π Ename, Dept_name (EMPLOYEE ⋈ DEPT)

If the join attributes have the same names in both relations, they need not be specified and we can

write R R1 * R2.

Example: Retrieve each EMPLOYEE's name and the name of his/her SUPERVISOR:

SUPERVISOR(SUPERSSN,SFN,SLN) (EMPLOYEE) SSN,FNAME,LNAM

T EMPLOYEE * SUPERVISOR

(T)
RESULT

FNAME,LNAME,SFN,SLN

Note: In the original definition of NATURAL JOIN, the join attributes were required to have the
same names in both relations.

Example: Retrieve each EMPLOYEE's name and the name of the DEPARTMENT he/she
works for:

T EMPLOYEE DNO=DNUMBER DEPARTMENT

RESULT (T)
FNAME,LNAME,DNAME

3.9 Relational Database Design Using ER-to-Relational Mapping
ER Model, when conceptualized into diagrams, gives a good overview of entity-relationship, which is

easier to understand. ER diagrams can be mapped to relational schema, that is, it is possible to create

relational schema using ER diagram.

Step 1: For each regular (strong) entity type E in the ER schema, create a relation R
that includes all the simple attributes of E.

Regular Entity Types
i. For each regular/strong entity type, create a corresponding relation that

includes all the simple attributes (includes simple attributes of composite
relations)

ii. ii. Choose one of the key attributes as primary § If composite, the simple
attributes together form the primary key

EMPLOYEE

SSN Lname Fname

DEPARTMENT

NUMBER NAME

Step 2: Weak Entity Types i. For each weak entity type, create a corresponding relation that includes all the
simple attributes ii. Add as a foreign key all of the primary key attribute(s) in the entity corresponding to the owner
entity type iii. The primary key is the combination of all the primary key attributes from the owner and the partial
key of the weak entity, if any

 DEPENDENT

EMPL-SSN NAME Relationship

MANAGER-SSN StartDate

EmployeeSSN DeptNumber

Step 3: For each binary 1:1 relationship type R in the ER schema, identify the relations S and T
that correspond to the entity types participating in R. Choose one of the relations, say S, and
include the primary key of T as a foreign key in S. Include all the simple attributes of R as
attributes of S

DEPARTMENT

Step 4: For each regular binary 1:N relationship type R identify the relation (N) relation S.

Include the primary key of T as a foreign key of S. Simple attributes of R map to attributes of S.

EMPLOYEE

Step 5: For each binary M:N relationship type R, create a relation S. Include the primary keys
of participant relations as foreign keys in S. Their combination will be the primary key for S.
Simple attributes of R become attributes of S.

WORKS-FOR

Step 6: For each multi-valued attribute A, create a new relation R. This relation will include an
attribute corresponding to A, plus the primary key K of the parent relation (entity type or
relationship type) as a foreign key in R. The primary key of R is the combination of A and K.

SupervisorSSN

Location DEP-NUMBER

DEP-LOCATION

Step 7: For each n-ary relationship type R, where n>2, create a new relation S to represent R.
Include the primary keys of the relations participating in R as foreign keys in S. Simple attributes
of R map to attributes of S. The primary key of S is a combination of all the foreign keys that
reference the participants that have cardinality constraint > 1.

3.1 MORE COMPLEX SQL QUERIES:

Module 3

3.1.1 Comparisons Involving NULL and Three-Valued Logic:

 NULL is used to represent a missing value, but that it usually has one of
three different interpretations:

(i) value unknown (exists but is not known)

(ii) value not available (exists but is purposely withheld)

(iii) attribute not applicable (undefined for this tuple).
 Consider the following examples to illustrate each of the three meanings of NULL.

Unknown value: A particular person has a date of birth but it is not known, so it is
represented by NULL in the database.

Unavailable or withheld value: A person has a home phone but does not want it to
be listed, so it is withheld and represented as NULL in the database.

Not applicable attribute: An attribute LastCollegeDegree would be NULL for a
person who has no college degrees, because it does not apply to that person.

 When a NULL is involved in a comparison operation, the result is considered to
be UNKNOWN (it may be TRUE or it may be FALSE).

 Hence, SQL uses a three-valued logic with values TRUE, FALSE, and UNKNOWN

instead of the standard two-valued logic with values TRUE or FALSE.

 Table 8.1 shows the results of three-valued logic.

 Rather than using = or <> to compare an attribute value to NULL, SQL uses IS or IS
NOT key words. Query 18 illustrates this; its result is shown in Figure 8.4d

3.1.2 Nested Queries, Tuples, and Set/Multiset Comparisons:

 Nested Queries are complete select-from-where blocks within the WHERE clause of
an outer query.

 SQL has a comparison operator IN, which compares a value ‘v’ with a set (or
multiset) of values ‘V’ and evaluates to TRUE if ‘v’ is one of the elements in ‘V’.

The first nested query selects the project numbers of projects that have a 'Smith'
involved as manager.

The second selects the project numbers of projects that have a 'Smith' involved as worker.

In the outer query, we use the OR logical connective to retrieve a PROJECT tuple if
the PNUMBER value of that tuple is in the result of either nested query.

 The = ANY (or = SOME) operator returns TRUE if the value v is equal to some value in

 Other operators that can be combined with ANY (or SOME) include >,>=, <, <=, and <

 The keyword ALL can also be combined with each of these operators. For

example, the comparison condition (v > ALL V) returns TRUE if the value v is

greater than all the values in the set (or multiset) V.

The following query returns the names of employees whose salary is
greater than the salary of all the employees in department 5:

3.1.3 Correlated Nested Queries:

 Whenever a condition in the WHERE clause of a nested query references

some attribute of a relation declared in the outer query, the two queries

are said to be correlated.

 We can understand a correlated query better by considering that the nested
query is evaluated once for each tuple (or combination of tuples) in the outer
query.

 In general, a query written with nested select-from-where blocks and using the =
or IN comparison operators can always be expressed as a single block query.

For example,Q16 may be written as in Q16A:

3.1.4 The EXISTS and UNIQUE Functions in SQL:

 The EXISTS function in SQL is used to check whether the result of
a correlated nested query is empty (contains no tuples) or not.

 Query 16B is an alternative form of query 16 that uses EXISTS.

We can think of Q16B as follows: For each EMPLOYEE tuple, evaluate the nested

query, which retrieves all DEPENDENT tuples with the same social security number,

sex, and name as the EMPLOYEE tuple; if at least one tuple EXISTS in the result of the

nested query, then select that EMPLOYEE tuple.

 EXISTS and NOT EXISTS are usually used in conjunction with a correlated nested query.

 In general, EXISTS(Q) returns TRUE if there is at least one tuple in the result of

the nested query Q, and it returns FALSE otherwise.

 On theother hand, NOT EXISTS(Q) returns TRUE if there are no tuples in the result
of nested queryQ, and it returns FALSE otherwise.

 Following query illustrate the use of NOT EXISTS.

We can explain Q6 as follows: For each EMPLOYEE tuple, the correlated nested

query selects all DEPENDENT tuples whose ESSN value matches the EMPLOYEE SSN; if the

result is empty, no dependents are related to the employee, so we select that EMPLOYEE

tuple and retrieve its FNAME and LNAME.

3.1.5 Explicit Sets and Renaming of Attributes in SQL:

 It is also possible to use an explicit set of values in the WHERE clause, rather than a
nested query. Such a set is enclosed in parentheses in SQL.

 In SQL, it is possible to rename any attribute that appears in the result of a query by

adding the qualifier AS followed by the desired new name.

 Hence, the AS construct can be used to alias both attribute and relation names, and it
can be used in both the SELECT and FROM clauses.

3.1.6 Joined Tables in SQL:

 The concept of a joined table (or joined relation) was incorporated into SQL to permit
users to specify a table resulting from a join operation in the FROM clause of a query.

 For example, consider query Ql, which retrieves the name and address of every

employee who works for the 'Research' department.

second table, DEPARTMENT.

 The concept of a joined table also allows the user to specify different types of join,

such as NATURAL JOIN and various types of OUTER JOIN.

 In a NATURAL JOIN on two relations Rand S, no join condition is specified; an implicit

equijoin condition for each pair of attributes with the same name from Rand S is

created.

 If the names of the join attributes are not the same in the base relations, it is possible

to rename the attributes so that they match, and then to apply NATURAL JOIN. In this

case, the AS construct can be used to rename a relation and all its attributes in the

FROM clause.

 It is also possible to nest join specifications; that is, one of the tables in a join may

itself be a joined table.

This is illustrated by Q2A, which is a different way of specifying query Q2, using the
concept of a joined table:

3.1.7 Aggregate Functions in SQL:

SQL has a number of built-in aggregate functions: COUNT, SUM, MAX, MIN, and AVG.

 The COUNT function returns the number of tuples or values as specified in a query.

 The functions SUM, MAX, MIN, and AVG are applied to a set or multiset of

numeric values and return, respectively, the sum, maximum value, minimum

value, and average (mean) of those values.

 These functions can be used in the SELECT clause or in a HAVING clause.

 The functions MAX and MIN can also be used with attributes that have nonnumeric
domains if the domain values have a total ordering among one another.

http://www.pdfwatermarkremover.com/buy.htm

tuples, as in the following example.

Here the asterisk (*) refers to the rows (tuples), so COUNT (*)
returns the number of rows in the result of the query.

 We may also use the COUNT function to count values in a column rather than

 If we write COUNT(SALARY) instead of COUNT(DISTINCT SALARY) in Q23,

then duplicate values will not be eliminated.

 In general, NULL values are discarded when aggregate functions are applied to

a particular column (attribute).

 We can specify a correlated nested query with an aggregate function, and then

use the nested query in the WHERE clause of an outer query.

Retrieve the names of all employees who have two or more dependents

3.1.8 Grouping: The GROUP BY and HAVING Clauses:

 In many cases we want to apply the aggregate functions to subgroups of tuples
in a relation ,where the subgroups are based on some attribute values.

For example, we may want to find the average salary of employees in
each department or the number of employees who work on each
project.

 In these cases we need to partition the relation into non overlapping subsets

(or groups) of tuples.

 Each group (partition) will consist of the tuples that have the same value of

some attributes, called the grouping attributets.

 SQL has a GROUP BY clause for this purpose.

 The GROUP BY clause specifies the grouping attributes, which should also appear
in the SELECT clause.

In Q24, the EMPLOYEE tuples are partitioned into groups-each group having the

same value for the grouping attribute DNO. The COUNT and AVG functions are applied

to each such group of tuples. Figure 8.6a illustrates how grouping works on Q24.It also

shows the result of Q24.

If NULLs exist in the grouping attribute, then a separate group is created for all
tuples with a NULL value in the grouping attribute. For example, if the EMPLOYEE
table had satisfy certain conditions.

 For example, suppose that we want to modify Query 25 so that only projects with
more than two employees appear in the result

 SQL provides a HAVING clause, which can appear in conjunction with a GROUP
BY clause, for this purpose.

Figure 8.6b illustrates the use of HAVING and displays the result of

 HAVING provides a condition on the group of tuples associated with each value of

the grouping attributes. Only the groups that satisfy the condition are retrieved

in the result ofthe query.

Q26.

 A query in SQL can consist of up to six clauses, but only the first two-SELECT and

FROM-are mandatory. The clauses are specified in the following order, with the

clauses between square brackets [...] being optional:

In general, there are numerous ways to specify the same query in SQL. This flexibility in
specifying queries has advantages and disadvantages.

The main advantage is that users can choose the technique with which they are
most comfortable when specifying a query. For example, many queries may be
specified with join conditions in the WHERE clause, or by using joined relations in
the FROM clause, or with some form of nested queries and the IN comparison
operator.

From the programmer's and the system's point of view regarding query

optimization, it is generally preferable to write a query with as little nesting and
implied ordering as possible.

The disadvantage of having numerous ways of specifying the same query is that
this may confuse the user, who may not know which technique to use to specify
particular types of queries.

Another problem is that it may be more efficient to execute a query specified in
one way than the same query specified in an alternative way. Thus, an additional
burden on the user is to determine which of the alternative specifications is the
most efficient.

3.2 SPECIFYING CONSTRAINTS AS ASSERTIONS AND TRIGGERS:

In SQL, users can specify general constraints - those that do not fall into any of the
categories described so far via declarative assertions, using the CREATE
ASSERTION statement of the DDL.

Each assertion is given a constraint name and is specified via a condition similar to
the WHERE clause of an SQL query.

For example, to specify the constraint that "the salary of an employee must not be
greater than the salary of the manager of the department that the employee works

for" in SQL, we can write the following assertion:
 The constraint name SALARY_CONSTRAINT is followed by the keyword

CHECK, which is followed by a condition in parentheses that must hold true

on every database state for the assertion to be satisfied.

The constraint name can be used later to refer to the constraint or to modify or drop it.

Whenever some tuples in the database cause the condition of an
ASSERTION statement to evaluate to FALSE, the constraint is violated.

The basic technique for writing such assertions is to specify a query that selects any
tuples that violate the desired condition. By including this query inside a NOT
EXISTS clause, the assertion will specify that the result of this query must be empty.
Thus, the assertion is violated if the result of the query is not empty.

Another statement related to CREATE ASSERTION in SQL is CREATE TRIGGER,
but triggers are used in a different way.

Trigger is used to specify the type of action to be taken when certain events
occur and when certain conditions are satisfied.

A typical trigger has three components:

1. The event(s): These are usually database update operations that are explicitly

applied to the database. The person who writes the trigger must make sure that

all possible events are accounted for. In some cases, it may be necessary to

write more than one trigger to cover all possible cases. These events are

specified after the keyword BEFORE, which means that the trigger should be

executed before the triggering operation is executed. An alternative is to use

the keyword AFTER, which specifies that the trigger should be executed after

the operation specified in the event is completed.

2. The condition that determines whether the rule action should be executed:

Once the triggering event has occurred, an optional condition may be evaluated.

create trigger t after insert on DEPARTMENT

for each row

begin

insert into DEPT_LOCATIONS values (6, 'TEXAS');
The Trigger ‘t’ is activated after we do the following

end;
:

insert into DEPARTMENT values (‘accounts’, 6,453453453 ‘1995-04-23’);

If no condition is specified, the action will be executed once the event occurs. If

a condition is specified, it is first evaluated, and only if it evaluates to true will

the rule action be executed. The condition is specified in the WHEN clause of the

trigger.

3. The action to be taken: The action is usually a sequence of SQL statements, but

it could also be a database transaction or an external program that will be

automatically executed.

Rather than offering users only the option of aborting an operation (using
ASSERTION) that causes a violation, the DBMS should make the following
option available.

 It may be useful to specify a condition that, if violated, causes some user to

EX: A manager may want to be informed if an employee's travel expenses
exceed a certain limit by receiving a message whenever this occurs.

The action that the DBMS must take in this case is to send an appropriate message
to that user. The condition is thus used to monitor the database.

Other actions may be specified, such as executing a specific stored procedure or
triggering other updates.

Trigger to insert a row in DEPT_LOCATIONS when a row is added to DEPARTMENT

3.3 VIEWS (VIRTUAL TABLES) IN SQL:
3.3.1 Concept of a View in SQL:

A view in SQL terminology is a single table that is derived from other tables.

These other tables could be base tables or previously defined views.

A view does not necessarily exist in physical form; it is considered a virtual table,
in contrast to base tables, whose tuples are actually stored in the database.

For example, we may frequently issue the following query that retrieve
the employee name and the project names that the employee works on.

SELECT FNAME, PNAME
FROM EMPLOYEE, PROJECT, WORKS_ON

WHERE (SSN = ESSN AND PNO =

PNUMBER);

 Rather than having to specify the join of the EMPLOYEE, WORKS_ON,

and PROJECT tables every time we issue that query, we can define a

view that is a result of these joins.

 We can then issue queries on the view, which are specified as single-
table retrievals rather than as retrievals involving two joins on three
tables.

 We call the EMPLOYEE, WORKS_ON, and PROJECT tables the
defining tables of the view.

3.3.2 Specification of Views in SQL:

In SQL, the command to specify a view is CREATE VIEW.

The view is given:

 a (virtual) table name (or view name),
 a list of attribute names

a query to specify the contents of the view.

If none of the view attributes results from applying Aggregate functions (arithmetic
operations), we do not have to specify attribute names for the view, since they
would be the same as the names of the attributes of the defining tables in the
default case.

The views in V1 and V2 create virtual tables whose schemas are illustrated in Figure
5.2 when applied to the COMPANY database schema of Figure 5.1.

http://www.pdfwatermarkremover.com/buy.htm

Figure 5.2 Two views V1 and V2 specified on the database schema of Figure
5.1

 We did not specify any new attribute names for the view WORKS_ON1; in

this case, WORKS_ON1 inherits the names of the view attributes from the

defining tables EMPLOYEE, PROJECT, and WORKS_ON.

 We explicitly specifies new attribute names for the view DEPT_INFO,

using a one-to- one correspondence between the attributes specified in

the CREATE VIEW clause and those specified in the SELECT clause of the

query that defines the view.

We can now specify SQL queries on views V1 and V2 in the same way we specify
queries involving base tables. relations.

Retrieve the last name and first name of all employees who work on
'ProjectX'
QV1: SELECT FNAME, LNAME

FROM WORKS_ON1

WHERE PNAME =

‘ProjectX’ ;

One of the main advantages of a view is to simplify the specification of certain
queries. Views are also used as a security and authorization mechanism.

A view is supposed to be always up to date.

If we modify the tuples in the base tables on which the view is defined, the view
must automatically reflect these changes.

It is the responsibility of the DBMS and not the user to make sure that the view is
up to date.

If we do not need a view any more, we can use the DROP VIEW command to dispose of
it.

3.4 EMBEDDED SQL and DYNAMIC SQL:

For example, the practical relational model has three main constructs:
 Attributes and their data types
 Tuples (rows) and
 Tables (sets or multisets of records).

The first problem that may occur is that the “data types of the programming
language differ from the attribute data types in the data model”.

Hence, it is necessary to have a binding for each host programming

language that specifies for each attribute type the compatible programming

language types. It is necessary to have a binding for each programming

language because different languages have different data types; for example,

the data types available in C and JAVA are different, and both differ from the

SQL data types.

Another problem occurs because the “results of most queries are set
(distinct elements) or multisets (duplicated elements) of tuples, and each
tuple is formed of a sequence of attribute values.

In the program, it is often necessary to access the individual data
values within individual tuples for printing or processing.

Hence, a binding is needed to map the query result data structure, which
is a table, to an appropriate data structure in the programming
language.

A mechanism is needed to loop over the tuples in a query result in order

to access a single tuple at a time and to extract individual values from

the tuple.

 A cursor or iterator variable is used to loop over the tuples in a query
result.

Individual values within each tuple are typically extracted into
distinct program variables of the appropriate type.

3.4.1 Retrieving Single Tuples with Embedded SQL:

The programming language in which we embed SQL statements language is
called the host language such as C, ADA, COBOL, or PASCAL.

An embedded SQL statement is distinguished from programming language
statements by prefixing it with the keywords EXEC SQL so that a preprocessor (or
precompiler) can separate embedded SQL statements from the host language
code.

The SQL statements can be terminated by a semicolon (;) or a matching END-
EXEC.

Within an embedded SQL command, we may refer to shared variables which
are used in both the C program and the embedded SQL statements.

Shared variables are prefixed by a colon (:) when they appear in an SQL
statement.
Names of attributes and relations-can only be used within the SQL commands, but
shared program variables can be used elsewhere in the C program without the ":"

Shared variables are declared within a declare section in the program, as
shown in Figure 3.4.1 (lines 1 through 7)

Figure 3.4.1: c program variables used in the embedded SQL examples E1
and E2

A few of the common bindings of C types to SQL types are as follows:

i) The SQL types INTEGER, SMALLINT, REAL, and DOUBLE are mapped to the C

types long, short, float,and double, respectively.

ii) Fixed-length and varying-length strings (CHAR[i], VARCHAR[i]) in SQL can

be mapped to arrays of characters (char [i+ 1], varchar [i+ 1]) in C.

Notice that the only embedded SQL commands in Figure 5.1 are lines 1 and 7, which
tell the precompiler to take note of the C variable names between BEGIN DECLARE and
END DECLARE. The variables declared in line 6 - SQLCODE and SQLSTATE are used to
communicate errors and exception conditions between the database system and the
program

http://www.pdfwatermarkremover.com/buy.htm

Communicating between the Program and the DBMS Using SQLCODE and SQLSTATE:

SQLCODE and SQLSTATE are used by the DBMS to communicate exception or
error conditions to the application program.

The SQLCODE variable is an integer variable.

After each database command is executed, the DBMS returns a value in SQLCODE:

a) A value of 0 indicates that the statement was executed successfully by
the DBMS.

b) If SQLCODE > 0 (or, more specifically, if SQLCODE = 100), this indicates that
no more data (records) are available in a query result.

c) If SQLCODE < 0, this indicates some error has occurred.

In later versions of the SQL standard, a communication variable called
SQLSTATE was added, which is a string of five characters:

a) A value of "00000" in SQLSTATE indicates no error or exception.

b) Other values indicate various errors or exceptions. For example,
"02000" indicates "no more data" when using SQLSTATE.

Example of Embedded SQL Programming:

http://www.pdfwatermarkremover.com/buy.htm

Figure 3.4.2: Program segment E1, a c program segment with embedded
SQL

The program reads (inputs) a social security number value and then
retrieves the EMPLOYEE tuple with that social security number from the
database via the embedded SQL command.

The INTO clause (line 5) specifies the program variables into which attribute
values from the database are retrieved.

C program variables in the INTO clause are prefixed with a colon (:).

Line 7 in El illustrates the communication between the database and the
program through the special variable SQLCODE.

If the value returned by the DBMS in SQLCODE is 0, the previous statement
was executed without errors or exception conditions.

In El a single tuple is selected by the embedded SQL query; that is why we
are able to assign its attribute values directly to C program variables in the
INTO clause in line 5.

 In general, an SQL query can retrieve many tuples. In that case, the C
program will typically go through the retrieved tuples and process them one
at a time. A cursor is used to allow tuple-at-a-time processing by the host
language program.

3.6 Specifying Queries at Runtime Using Dynamic SQL:

In the previous examples, the embedded SQL queries were written as part of the
host program source code. Hence, any time we want to write a different query,
we must write a new program, and go through all the steps involved (compiling,
debugging, testing, and so on).

In some cases, it is convenient to write a program that can execute different SQL

queries or updates (or other operations) dynamically at runtime

 For example, we may want to write a program that accepts an SQL query

typed from the monitor, executes it, and displays its result, such as the

interactive interfaces available for most relational DBMSs.

a) Another example is when a user-friendly interface generates SQL queries
dynamically for the user based on point-and-click operations.

Dynamic SQL example:

Program segment E3 reads a string that is input by the user (that string should be

an SQL update command) into the string variable sqlupdatestring in line3. It then

prepares this as an SQL command in line 4 by associating it with the SQL variable

sqlcommand. Line 5 then executes the command.

It is possible to combine the PREPARE and EXECUTE commands (lines 4 and 5

EXEC SQL EXECUTE IMMEDIATE: sqlupdatestring ;

in E3) into a single statement by writing:

3.7 DATABASE STORED PROCEDURES AND SQL/PSM(Persistent Stored Modules):

It is sometimes useful to create database program modules (procedures or
functions)-that are stored and executed by the DBMS at the database server. These
are historically known as database stored procedures, although they can be
functions or procedures.

Stored procedures are useful in the following circumstances:

a) If a database program is needed by several applications, it can be stored at the

server and invoked by any of the application programs. This reduces duplication

of effort and improves software modularity.

b) Executing a program at the server can reduce data transfer and hence
communication cost between the client and server in certain situations.

c) These procedures can enhance the modeling power provided by views by

allowing more complex types of derived data to be made available to the

database users.

http://www.pdfwatermarkremover.com/buy.htm

SELECT C.cid, C.cname, COUNT(*) FROM Customers C,

Orders a WHERE C.cid = O.cid GROUP BY C.cid, C.cname

THE THREE-TIER APPLICATION ARCHITECTURE

3.8.1 Single-Tier and Client-Server Architectures

Initially, data-intensive applications were combined into a single tier, including the
DBMS, application logic, and user interface, as illustrated in Figure 7.5. The application
typically ran on a mainframe, and users accessed it through dumb terminals that could
perform only data input and display. This approach has the benefit of being easily
maintained by a central administrator. The commoditization of the PC and the
availability of cheap client computers led to the development of the two-tier
Two-tier architectures, often also referred to as client-server architectures, consist of

a client computer and a server computer, which interact through a well-defined
protocol. In the traditional client server architecture, the client implements just the
graphical user interface, and the server. implements both the business logic and the
data management; such clients are often called thin clients, and this architecture is
illustrated in Figure 7.6.

http://www.pdfwatermarkremover.com/buy.htm

3.8.2 THREE TIER ARCHITECTURES

Presentation Tier:

Users require a natural interface to make requests, provide input, and to see
results. The widespread use of the Internet has made Web-based interfaces
increasingly popular.

At the presentation layer, we need to provide forms through which the user can
issue requests, and display responses that the middle tier generates. Ex: Using The
hypertext markup language (HTML)

Middle Tier:

The application logic executes here. An enterprise-class application reflects
complex business processes, and is coded in a general purpose language such as

C++ or Java. It controls what data needs to be input before an
action can be executed,

database query results.

Data Management Tier:
Data-intensive Web applications involve DBMSs, which are the subject of this book.

3.8.3 Advantages of the Three-Tier Architecture

The three-tier architecture has the following advantages:

a) Heterogeneous Systems:

Applications can utilize the strengths of different platforms and different
software components at the different tiers. It is easy to modify or replace
the code at any tier without affecting the other tiers.

b) Integrated Data Access:

In many applications, the data must be accessed from several sources. This can
be handled transparently at the middle tier, where we can centrally manage
connections to all database systems involved.

c) Scalability to Many Clients:

Each client is lightweight and all access to the system is through the middle tier.
The middle tier can share database connections across clients, and if the middle

http://www.pdfwatermarkremover.com/buy.htm
http://www.pdfwatermarkremover.com/buy.htm

tier becomes the bottle-neck, we can deploy several servers executing the
middle tier code; clients can connect to anyone of these servers, if the logic is
designed appropriately.

d) Software Development Benefits:

By dividing the application cleanly into parts that address presentation, data
access, and business logic, we gain many advantages.

The business logic is centralized, and is therefore easy to maintain, debug, and
change. Interaction between tiers occurs through well-defined, standardized
APls. Therefore, each application tier can be built out of reusable components
that can be individually developed, debugged, and tested.

DATABASE MANAGEMENT SYSTEM (18CS53)

Module 4 : NORMALIZATION: DATABASE DESIGN THEORY

Informal design guidelines for relation schemas

The four informal measures of quality for relation schema

1. Semantics of the attributes

2. Reducing the redundant values in tuples

3. Reducing the null values in tuples

4. Disallowing the possibility of generating spurious tuples

 Semantics of relations attributes

Specifies how to interpret the attributes values stored in a tuple of the relation. In other words, how the

attribute value in a tuple relate to one another.

Guideline 1: Design a relation schema so that it is easy to explain its meaning. Do not combine attributes

from multiple entity types and relationship types into a single relation. Reducing redundant values in tuples.

Save storage space and avoid update anomalies.

 Insertion anomalies.

 Deletion anomalies.

 Modification anomalies

Insertion Anomalies

To insert a new employee tuple into EMP_DEPT, we must include either the attribute values for that

department that the employee works for, or nulls. It's difficult to insert a new department that has no

employee as yet in the EMP_DEPT relation. The only way to do this is to place null values in the attributes

for employee. This causes a problem because SSN is the primary key of EMP_DEPT, and each tuple is

supposed to represent an employee entity - not a department entity.

Deletion Anomalies

If we delete from EMP_DEPT an employee tuple that happens to represent the last employee working for a

particular department, the information concerning that department is lost from the database.

Modification Anomalies

In EMP_DEPT, if we change the value of one of the attributes of a particular department- say the manager
of department 5- we must update the tuples of all employees who work in that department.

Guideline 2: Design the base relation schemas so that no insertion, deletion, or modification

better to have a separate relation, EMP_OFFICE, rather than an attribute OFFICE_NUMBER in

EMPLOYEE.

DATABASE MANAGEMENT SYSTEM (18CS53)

Guideline 3: Avoid placing attributes in a base relation whose values are mostly null. Disallowing spurious

tuples. Spurious tuples - tuples that are not in the original relation but generated by natural join of

decomposed subrelations. Example: decompose EMP_PROJ into EMP_LOCS and EMP_PROJ1.

Guideline 4: Design relation schemas so that they can be naturally JOINed on primary keys or foreign keys

in a way that guarantees no spurious tuples are generated.

Q Explain Functional Dependencies.

A functional dependency (FD) is a constraint between two sets of attributes from the database.

It is denoted by X →Y We say that "Y is functionally dependent on X". Also, X is called the left-hand side

of the FD. Y is called the right-hand side of the FD. A functional dependency is a property of the semantics

or meaning of the attributes, i.e., a property of the relation schema.

Ex Vehicle → State

They must hold on all relation states (extensions) of R. Relation extensions r(R).

A FD X →Y is a full functional dependency if removal of any attribute from X means that the dependency

does not hold any more; otherwise, it is a partial functional dependency.

Examples:

1. SSN→ENAME

2. PNUMBER →{PNAME, PLOCATION}

3. {SSN, PNUMBER}→HOURS

FD is property of the relation schema R, not of a particular relation state/instance Let R be a relation

schema, where X→R and Y R t1, t2 r, t1[X] = t2[X] t1[Y] = t2[Y]

DATABASE MANAGEMENT SYSTEM (18CS53)

The FD X→Y holds on R if and only if for all possible relations r(R), whenever two tuples of r agree on the

attributes of X, they also agree on the attributes of Y.

 the single arrow denotes "functional dependency"

 X→Y can also be read as "X determines Y"

 the double arrow denotes "logical implication" .

Q. Explain the Inference Rule (IR) for Functional dependencies

 The Armstrong's axioms are the basic inference rule.

 Armstrong's axioms are used to conclude functional dependencies on a relational database.

 The inference rule is a type of assertion. It can apply to a set of FD(functional dependency) to derive

other FD.

 Using the inference rule, we can derive additional functional dependency from the initial set.

The Functional dependency has 6 types of inference rule:

1. Reflexive Rule (IR1)

In the reflexive rule, if Y is a subset of X, then X determines Y.

If X ⊇ Y then X → Y

Example:

X = {a, b, c, d, e}

Y = {a, b, c}

Example:

Lastname ⊆ { Firstname, Lastname }
then, { Firstname, Lastname} → Lastname

2. Augmentation Rule (IR2)

The augmentation is also called as a partial dependency. In augmentation, if X determines Y, then XZ

determines YZ for any Z.

If X → Y then XZ → YZ

Example:

For R(ABCD), if A → B then AC → BC

Example:
Regno → { Firstname, Lastname}
then, Regno, address → { Firstname, Lastname, address }

3. Transitive Rule (IR3)

In the transitive rule, if X determines Y and Y determine Z, then X must also determine Z.

If X → Y and Y → Z then X → Z

DATABASE MANAGEMENT SYSTEM (18CS53)

Example:
Rollno → address and address → Pincode
then Rollno → Pincode

4. Union Rule (IR4)

Union rule says, if X determines Y and X determines Z, then X must also determine Y and Z.

If X → Y and X → Z then X → YZ

Proof:

1. X → Y (given)

2. X → Z (given)

3. X → XY (using IR2 on 1 by augmentation with X. Where XX = X)

4. XY → YZ (using IR2 on 2 by augmentation with Y)

5. X → YZ (using IR3 on 3 and 4)

Example:
Rollno → name and Rollno → address
then Rollno → name, address

5. Decomposition Rule (IR5)

Decomposition rule is also known as project rule. It is the reverse of union rule.

This Rule says, if X determines Y and Z, then X determines Y and X determines Z separately.

If X → YZ then X → Y and X → Z

Proof:

1. X → YZ (given)

2. YZ → Y (using IR1 Rule)

3. X → Y (using IR3 on 1 and 2)

Example:
Rollno → Firstname, Lastname
then, Rollno → Firstname and Rollno → Lastname

6. Pseudo transitive Rule (IR6)

In Pseudo transitive Rule, if X determines Y and YZ determines W, then XZ determines W.

If X → Y and YZ → W then XZ → W

Proof:

1. X → Y (given)

2. WY → Z (given)

3. WX → WY (using IR2 on 1 by augmenting with W)

4. WX → Z (using IR3 on 3 and 2)

DATABASE MANAGEMENT SYSTEM (18CS53)

Example:
Rollno → name and name, marks →percentage
then, Rollno,marks → percentage

Q What is the need for normalization? Explain the first, second and third normal forms with

examples

The purpose of normalization:

 The problems associated with redundant data.

 The identification of various types of update anomalies such as insertion, deletion, and modification

anomalies.

 How to recognize the appropriateness or quality of the design of relations.

 The concept of functional dependency, the main tool for measuring the appropriateness of attribute groupings

in relations.

 How functional dependencies can be used to group attributes into relations that are in a known normal form.

 How to define normal forms for relations

 How to undertake the process of normalization.

 How to identify the most commonly used normal forms, namely first (1NF), second (2NF), and third (3NF)

normal forms, and Boyce-Codd normal form (BCNF).

 How to identify fourth (4NF), and fifth (5NF) normal forms.

The most commonly used normal forms

 First Normal Form (1NF)

 Second Normal Form (2NF)

 Third Normal Form (3NF)

 Boyce-Codd Normal Form

Other Normal Forms

 Fourth Normal Form

 Fifth Normal Form

 Domain Key Normal Form

First Normal Form (1NF)

It states that the domains of attributes must include only atomic (simple, indivisible) values and that the

value of any attribute in a tuple must be a single value from the domain of that attribute. Practical Rule:

"Eliminate Repeating Groups," i.e., make a separate table for each set of related attributes, and give each

table a primary key.

Formal Definition: A relation is in first normal form (1NF) if and only if all underlying simple domains

contain atomic values only.

DATABASE MANAGEMENT SYSTEM (18CS53)

Second Normal Form (2NF)

Second normal form is based on the concept of fully functional dependency. A functional X→Y is a fully

functional dependency is removal of any attribute A from X means that the dependency does not hold any

more. A relation schema is in 2NF if every nonprime attribute in relation is fully functionally dependent on

the primary key of the relation. It also can be restated as: a relation schema is in 2NF if every nonprime

attribute in relation is not partially dependent on any key of the relation.Practical Rule: "Eliminate

Redundant Data," i.e., if an attribute depends on only part of a multivalued key, remove it to a separate table.

Formal Definition: A relation is in second normal form (2NF) if and only if it is in 1NF and every nonkey

attribute is fully dependent on the primary key.

Third Normal Form (3NF)

Third normal form is based on the concept of transitive dependency. A functional dependency X→Y in a

relation is a transitive dependency if there is a set of attributes Z that is not a subset of any key of the

relation, and both X → Z and Z→ Y hold. In other words, a relation is in 3NF if, whenever a functional

dependency X→ A holds in the relation, either (a) X is a superkey of the relation, or (b) A is a prime

attribute of the relation.

Practical Rule: "Eliminate Columns not Dependent on Key," i.e., if attributes do not contribute to
a description of a key, remove them to a separate table.

Formal Definition: A relation is in third normal form (3NF) if and only if it is in 2NF and every
nonkey attribute is nontransitively dependent on the primary key.

1NF: R is in 1NF iff all domain values are atomic.

2NF: R is in 2 NF iff R is in 1NF and every nonkey attribute is fully dependent on the key.

3NF: R is in 3NF iff R is 2NF and every nonkey attribute is non-transitively dependent on the
key.

DATABASE MANAGEMENT SYSTEM (18CS53)

Boyce Codd Normal form (BCNF)

It is an advance version of 3NF that’s why it is also referred as 3.5NF. BCNF is stricter than 3NF. A table

complies with BCNF if it is in 3NF and for every functional dependency X→Y, X should be the super key

of the table.

Example: Suppose there is a company wherein employees work in more than one department. They store

the data like this:

emp_id emp_nationality emp_dept dept_type dept_no_of_emp

1001

Austrian
Production and

planning

D001

200

1001 Austrian stores D001 250

1002 American design technical D134 100

1002 American Purchasing D134 600

Functional dependencies in the table above:

emp_id →emp_nationality

emp_dept →{dept_type, dept_no_of_emp}

Candidate key: {emp_id, emp_dept}

The table is not in BCNF as neither emp_id nor emp_dept alone are keys.

To make the table comply with BCNF we can break the table in three tables like this:

emp_nationality table:

emp_id emp_nationality

1001 Austrian

1002 American

emp_dept table:

emp_dept dept_type dept_no_of_emp

Production
and planning

D001 200

stores D001 250

design and

technical
support

D134

100

Purchasing
department

D134 600

https://beginnersbook.com/2015/04/functional-dependency-in-dbms/

DATABASE MANAGEMENT SYSTEM (18CS53)

Emp_dept_mapping table:

emp_id emp_dept

1001
Production and
planning

1001 stores

1002
design and
technical support

1002
Purchasing
department

Functional dependencies:

emp_id →emp_nationality

emp_dept →{dept_type, dept_no_of_emp}

Candidate keys:For first table: emp_id For second table: emp_dept For third table: {emp_id, emp_dept}

This is now in BCNF as in both the functional dependencies left side part is a key.

Q. Explain multivalued dependency and fourth normal form 4NF with examples.

- Rules for 4th Normal Form

For a table to satisfy the Fourth Normal Form, it should satisfy the following two conditions:

- It should be in the Boyce-Codd Normal Form.

- And, the table should not have any Multi-valued Dependency.

A table is said to have multi-valued dependency, if the following conditions are true,.

1. For a dependency A → B, if for a single value of A, multiple value of B exists, then the table may have

multi-valued dependency.

2. Also, a table should have at-least 3 columns for it to have a multi-valued dependency.

3. And, for a relation R(A,B,C), if there is a multi-valued dependency between, A and B, then B and C

should be independent of each other.

If all these conditions are true for any relation (table), it is said to have multi-valued dependency.

Example: Suppose that employees can be assigned to multiple projects. Also suppose that employees can

have multiple job skills as shown in database. Try to normalize the" database.

p_no Proj_no Skill

1211 1 Analysis

 7 Design

 Programming

Solution: In order to normalize it we flatten the database with first normal form as shown below:

DATABASE MANAGEMENT SYSTEM (18CS53)

Emp_no Proj_no Skill

1211 1 Analysis

1211 1 Design

1211 1 Programming

1211 7 Analysis

1211 7 Design

1211 7 Programming

This database shows that Project_No and Skill are independent multi-valued facts about Emp_No that is it

contains "a multi-valued dependency. here is a high degree of redundancy that will lead to update problems.

Since the database contains MVDs, so it should be decomposed with the help of rule of fourth normal form.

Here, the database contain the following MVDs:

Emp_No → Proj_No

Emp_No→ Skill

Here, Proj_No and Skill are independent to each other, so it should be decomposed in to following database

according to forth normal form.

EMP _PROJECT (Emp_No, Proj_No)

EMP _SKILL (Emp_No, Skill)

EMP _PROJECT

Emp_no Proj_no

1211 1

1211 7

EMP _SKILL

Emp_no

Skill

1211 Analysis

1211 Design

1211 Programming

Q. Explain Join dependencies and Fifth normal form/ Projected Normal Form (5NF)

A database is said to be in 5NF, if and only if,

 It's in 4NF

DATABASE MANAGEMENT SYSTEM (18CS53)

 If we can decompose table further to eliminate redundancy and anomaly, and when we re-join the

decomposed tables by means of candidate keys, we should not be losing the original data or any new

record set should not arise. In simple words, joining two or more decomposed table should not lose

records nor create new records.

Consider an example of different Subjects taught by different lecturers and the lecturers taking classes for

different semesters.

In above table, Rose takes both Mathematics and Physics class for Semester 1, but she does not take Physics

class for Semester 2. In this case, combination of all these 3 fields is required to identify a valid data.

Imagine we want to add a new class - Semester3 but do not know which Subject and who will be taking that

subject. We would be simply inserting a new entry with Class as Semester3 and leaving Lecturer and subject

as NULL. As we discussed above, it's not a good to have such entries. Moreover, all the three columns

together act as a primary key, we cannot leave other two columns blank!

Hence we have to decompose the table in such a way that it satisfies all the rules till 4NF and when join

them by using keys, it should yield correct record. Here, we can represent each lecturer's Subject area and

their classes in a better way. We can divide above table into three - (SUBJECT, LECTURER),

(LECTURER, CLASS), (SUBJECT, CLASS)

Now, each of combinations is in three different tables. If we need to identify who is teaching which subject

to which semester, we need join the keys of each table and get the result.

For example, who teaches Physics to Semester 1, we would be selecting Physics and Semester1 from table 3

above, join with table1 using Subject to filter out the lecturer names. Then join with table2 using Lecturer to

get correct lecturer name. That is we joined key columns of each table to get the correct data. Hence there is

no lose or new data - satisfying 5NF condition.

Q.What is Functional dependency? Write an algorithm to find minimal cover for a set of Functional

dependencies.

DATABASE MANAGEMENT SYSTEM (18CS53)

A functional dependency (FD) is a constraint between two sets of attributes from the database. It is denoted

by X →Y. We say that "Y is functionally dependent on X". Also, X is called the left-hand side of the FD. Y

is called the right-hand side of the FD. A functional dependency is a property of the semantics or meaning of

the attributes i.e., a property of the relation schema. They must hold on all relation states (extensions) of R.

Relation extensions r(R). A FD X Y is a full functional dependency if removal of any attribute from X means

that the dependency does not hold any more; otherwise, it is a partial functional dependency.

Examples:

1. SSN→ENAME

2. PNUMBER→{PNAME, PLOCATION}

3. {SSN, PNUMBER}→HOURS

FD is property of the relation schema R, not of a particular relation state/instance The FD X→Y holds on R

if and only if for all possible relations r(R), whenever two tuples of r agree on the attributes of X, they also

agree on the attributes of Y.

• the single arrow denotes "functional dependency"

• X→Y can also be read as "X determines Y".

Finding the Minimal Cover or Canonical cover

 A canonical cover is a simplified and reduced version of the given set of functional dependencies.

 Since it is a reduced version, it is also called as Irreducible set.

Given a set of functional dependencies F :

1. Start with F

2. Remove all trivial functional dependencies

3. Repeatedly apply (in whatever order you like), until no changes are possible

• Union Simplification (it is better to do it as soon as possible, whenever possible)

• RHS Simplification

• LHS Simplification

4. Result is the minimal cover

Canonical Cover Algorithm Basic Algorithm

ALGORITHM CanonicalCover (X: FD set)

BEGIN

REPEAT UNTIL STABLE

(1) Where possible, apply Additivity rule (A’s axioms) (e.g., A→BC, A→CD becomes A→BCD)

DATABASE MANAGEMENT SYSTEM (18CS53)

(2) remove “extraneous attributes” from each FD

(e.g., AB→ C, A→ B becomes A→B, B→ C i.e., A is extraneous in AB →C

C) Extraneous Attributes

(1) Extraneous is RHS? e.g.: can we replace A→ BC with A→C? (i.e. Is B extraneous in A→BC?)

(2) Extraneous in LHS ? e.g.: can we replace AB →C with A→ C ? (i.e. Is B extraneous in AB→C?) Simple

but expensive test:

1. Replace A →BC (or AB→C) with A→C in F F2 = F - {A→BC} U {A→C} or F - {AB→C} U

{A→C}

2. Test if F2+ = F+ ? if yes, then B extraneous

Problem: Find minimal cover for

a) FD { B→A, D→A, AB→D}

STEP 1 : All the above FD’s are in Canonical form step1 complete(only one attribute in right hand

side)

STEP2: if AB→D can be replaced by B→D & A→D

Since B→A by augmenting B (IR2) - BB→AB or B→AB

However AB→D is given

Hence by transitive rule(IR3) - B→AB , AB→D we get B→D

So we can replace AB→D to B→D

Now we have set equivalent

E+ ={ B→A, D→A, B→D}

No reduction possible since all FD’s have single attribute on the left hand side. Hence

E+ is the minimal cover for the given FD’s

b) G: {A→BCDE, CD→E}

STEP 1: Not canonical form A→BCDE (i)

A→B, A→C, A→D, A→E ------ (i)

STEP 2: For CD→E from (i) A→C , A→D

We can get A→CD and CD→E as A→E (IR3)

As A→E is redundant we can remove A→E in the set

Now we have {A→B, A→C, A→D, CD→E } the minimal cover

Closure Of Functional Dependency

The Closure Of Functional Dependency means the complete set of all possible attributes that can be

functionally derived from given functional dependency

● If “F” is a functional dependency then closure of functional dependency can be denoted using “{F} + ”.

● There are three steps to calculate closure of functional dependency. These are:
Step-1 : Add the attributes which are present on Left Hand Side in the original functional

dependency.

DATABASE MANAGEMENT SYSTEM (18CS53)

Step-2 : Now, add the attributes present on the Right Hand Side of the functional

dependency.

Step-3 : With the help of attributes present on Right Hand Side, check the other attributes

that can be derived from the other given functional dependencies. Repeat this process until

all the possible attributes which can be derived are added in the closure.

Example 1

Consider a relation R(A,B,C,D,E) having below mentioned functional

dependencies.

FD1 : A -> BC

FD2 : C -> B

FD3 : D -> E

FD4 : E -> D

Now, calculate the closure of attributes of the relation R. The closures will be:

{A} + = {A, B, C}

{B} + = {B}

{C} + = {B, C}

{D} + = {D, E}

{E} + = {E, D

Example 2

Consider a relation R (A , B , C , D , E , F , G) with the functional dependencies-

A → BC
BC → DE
D → F
CF → G

Now, let us find the closure of some attributes and attribute sets

Closure of attribute A-

A
+
 = { A }

= { A , B , C } (Using A → BC)

= { A , B , C , D , E } (Using BC → DE)

= { A , B , C , D , E , F } (Using D → F)

= { A , B , C , D , E , F , G } (Using CF → G)

Thus,

Closure of attribute D-

A
+
 = { A , B , C , D , E , F , G }

D
+
 = { D }

= { D , F } (Using D → F)

We can not determine any other attribute using attributes D and F contained in the result set.

Thus,

D
+
 = { D , F }

DATABASE MANAGEMENT SYSTEM (18CS53)

Closure of attribute set {B, C}-

{ B , C }
+
= { B , C }

= { B , C , D , E } (Using BC → DE)

= { B , C , D , E , F } (Using D → F)

= { B , C , D , E , F , G } (Using CF → G)

Thus,

{ B , C }
+
 = { B , C , D , E , F , G }

Closure of attribute set { C,F}-

{ C ,F }
+
 = { C,F}

= { C , F , G}

Closure Of Functional Dependency : Calculating Candidate Key

A Candidate Key of a relation is an attribute or set of attributes that can determine the whole relation or

contains all the attributes in its closure.

Example-1 : Consider the relation R(A,B,C) with given functional dependencies :

FD1 : A-> B

FD2 : B ->C

{A} + = {A, B, C}

{B} + = {B, C}

{C} + = {C}
Clearly, “A” is the candidate key as, its closure contains all the attributes present in the

relation “R”.

Example-2 : Consider another relation R(A, B, C, D, E) having the Functional dependencies :

FD1 : A-> BC

FD2 : C-> B

FD3 : D ->E

FD4 : E ->D

{A} + = {A, B, C}

{B} + = {B}

{C} + = {C, B}

{D} + = {E, D}

{E} + = {E, D}
In this case, a single attribute does is unable to determine all the attribute on its own like in previous

example. Here, we need to club two or more attributes to determine the candidate

keys.

{A, D} + = {A, B, C, D, E}

{A, E} + = {A, B, C, D, E}

Hence, "AD" and "AE" are the two possible keys of the given relation “R”. Any other
combination other than these two would have acted as extraneous attributes

Closure Of Functional Dependency : Key Definitions

DATABASE MANAGEMENT SYSTEM (18CS53)

1. Prime Attributes : Attributes which are indispensable part of candidate keys. For example : “A, D, E”

attributes are prime attributes in above example

2. Non-Prime Attributes : Attributes other than prime attributes which does not take part in formation of

candidate keys.

3. Extraneous Attributes : Attributes which does not make any effect on removal from candidate key.

For example : Consider the relation R(A, B, C, D) with functional dependencies :

FD1 : A-> BC

FD2 : B ->C

FD3 : D ->C

Here, Candidate key can be “AD” only. Hence,

Prime Attributes : A, D.

Non-Prime Attributes : B, C
Extraneous Attributes : B, C(As if we add any of the to the candidate key, it will remain

unaffected). Those attributes, which if removed does not affect closure of that set.

Equivalence of Functional Dependencies
Two different sets of functional dependencies for a given relation may or may not be equivalent. If

FD1 and FD2 are the two sets of functional dependencies following with below 3 cases are possible,

then FD’s are equivalent.

● If FD1 can be derived from FD2, we can say that FD2 ⊃ FD1.

● If FD2 can be derived from FD1, we can say that FD1 ⊃ FD2.

● If above two cases are true, FD1=FD2.

Q. Let us take an example to show the relationship between two FD sets.

A relation R(A,B,C,D) having two FD sets FD1 = {A->B, B->C, AB->D} and FD2 = {A->B, B->C,

A->C, A->D}

Step 1. Checking whether all FDs of FD1 are present in FD2

● A->B in set FD1 is present in set FD2.

● B->C in set FD1 is also present in set FD2.

● AB->D in present in set FD1 but not directly in FD2 but we will check whether we can derive it or not.

For set FD2, (AB) + = {A,B,C,D}. It means that AB can functionally determine A, B, C and D. So AB->D

will also hold in set FD2. As all FDs in set FD1 also hold in set FD2, FD2 ⊃ FD1 is true.

Step 2. Checking whether all FDs of FD2 are present in FD1

● A->B in set FD2 is present in set FD1.

● B->C in set FD2 is also present in set FD1.

● A->C is present in FD2 but not directly in FD1 but we will check whether we can derive it or not. For set

FD1, (A) + = {A,B,C,D}. It means that A can functionally determine A, B, C and D. SO A->C will also

hold in set FD1.

● A->D is present in FD2 but not directly in FD1 but we will check whether we can derive it or not. For set

FD1, (A) + = {A,B,C,D}. It means that A can functionally determine A, B, C and D. SO A->D will also

hold in set FD1. As all FDs in set FD2 also hold in set FD1, FD1 ⊃ FD2 is true.

Step 3. As FD2 ⊃ FD1 and FD1 ⊃ FD2 both are true FD2 =FD1 is true.

These two FD sets are semantically equivalent.

Let us take another example to show the relationship between two FD sets. A

relation R2(A,B,C,D) having two FD sets FD1 = {A->B, B->C,A->C} and FD2 = {A->B,

DATABASE MANAGEMENT SYSTEM (18CS53)

B->C, A->D}

Step 1. Checking whether all FDs of FD1 are present in FD2

● A->B in set FD1 is present in set FD2.

● B->C in set FD1 is also present in set FD2.

● A->C is present in FD1 but not directly in FD2 but we will check whether we can derive it or not. For set

FD2, (A) + = {A,B,C,D}. It means that A can functionally determine A, B, C and D. SO A->C will also

hold in set FD2.

As all FDs in set FD1 also hold in set FD2, FD2 ⊃ FD1 is true.

Step 2. Checking whether all FDs of FD2 are present in FD1

● A->B in set FD2 is present in set FD1.

● B->C in set FD2 is also present in set FD1.

● A->D is present in FD2 but not directly in FD1 but we will check whether we can derive it or not. For set
FD1, (A) + = {A,B,C}. It means that A can’t functionally determine D. SO A->D will not hold in FD1.

As all FDs in set FD2 do not hold in set FD1, FD2 ⊄ FD1.

Step 3. In this case, FD2 ⊃ FD1 and FD2 ⊄ FD1, these two FD sets are not semantically

equivalent.

Q . Properties of Relational Decompositions

Decomposition of a relation is done when a relation in relational model is not in appropriate normal form.

Relation R is decomposed into two or more relations if decomposition is lossless join as well as

dependency preserving.

Algorithm 11.1 Testing for the lossless (nonadditive) join property

Input: A universal relation R, a decomposition DECOM P = f R1 ; R2; : : : ; Rmg of R, and a set F of

functional dependencies.

1. Create an initial matrix S with one row i for each relation Ri in D , and one column j for each attribute Aj

in R.

2. Set S(i; j) := bij for all matrix entries.

3. For each row i{ for each column j { if Ri includes attribute Aj Then set S(i; j) := aj

4. Repeat the following loop until a complete loop execution results in no changes to S

{For each X →Y in F { for all rows in S which has the same symbols in the columns corresponding to

attributes in X { make the symbols in each column that correspond to an attribute in Y be the same in all

these rows as follows: if any of the rows has an “α” symbol for the column, set the other rows to the same

“α” symbol in the column. If no “α” symbol exists for the attribute in any of the rows, choose one of the β

symbols that appear in one of the rows for the attribute and set the other rows to that same symbol β in the

column

4. If a row is made up entirely of “α” symbols, then the decomposition has the lossless join property;

otherwise it does not.

Problem

DATABASE MANAGEMENT SYSTEM (18CS53)

Consider R(A,B,C,D,E) which is decomposed into R1=(A,B,C) AND R2=(C,D,E)with the FD A→B C

, CD→E ,B→D, E→A show that the above decomposition of schema R is not a loseless

 A B C D E

R1

R2

α α α

α α

α

A→B C no change

CD→E no change

E→A no change The above table does not contain any of the rows completely filled with symbol α so it is

not loseless.

Problem

Example:

R = {SSN; ENAME; PNUM BER; PN AM E; PLOCATION; HOURS}

FD {SSN →ENAM E; PNUM BER →{PN AM E; PLOCATION } ,{SSN;

PNUMBER}→HOURS}

DECOMP= { R1 ; R2; R3 }

R1 = {SSN; EN AME}

R2 = {PNUMBER; PNAME; PLOCATION}

R3 = {SSN; PNUMBER; HOURS}

 SSN ENAME PNUMBER PNAME PLOCATION HOURS

R1 α

α

α

α

α

α

α

α

R2

R3

a) initial matrix

 SSN ENAME PNUMBER PNAME PLOCATION HOURS

R1 α α

α

α

α R2

DATABASE MANAGEMENT SYSTEM (18CS53)

R3
α α α α

b) after applying FD - SSN →EN AM E

 SSN ENAME PNUMBER PNAME PLOCATION HOURS

R1 α

α

α

α

α

α

α

α

α

α

α

R2

R3

c) after applying FD PNUM BER →{PN AM E; PLOCATION}

The last row is all α symbols hence it is loseless join decomposition.

 Note :Practice all other Solved problems in Class

Module 5

5.1 Introduction to Transaction Processing

Single-User Versus Multiuser Systems

 A DBMS is single-user id at most one user at a time can use the system, and it is multiuser if

many users can use the system—and hence access the database—concurrently.

 Most DBMS are multiuser (e.g., airline reservation system).

 Multiprogramming operating systems allow the computer to execute multiple programs (or

processes) at the same time (having one CPU, concurrent execution of processes is actually
interleaved).

 If the computer has multiple hardware processors (CPUs), parallel processing of multiple
processes is possible.

5.2 Transactions, Read and Write Operations

 A transaction is a logical unit of database processing that includes one or more database access

operations (e.g., insertion, deletion, modification, or retrieval operations). The database operations

that form a transaction can either be embedded within an application program or they can be

specified interactively via a high-level query language such as SQL. One way of specifying the

transaction boundaries is by specifying explicit begin transaction and end transaction

statements in an application program; in this case, all database access operations between the two

are considered as forming one transaction. A single application program may contain more than

one transaction if it contains several transaction boundaries. If the database operations in a

transaction do not update the database but only retrieve data, the transaction is called a read-only

transaction.

 Read-only transaction - do not changes the state of a database, only retrieves data.
 The basic database access operations that a transaction can include are as follows:

read_item(X): reads a database item X into a program variable X.

o write_item(X): writes the value of program variable X into the database item named X.

Executing a read_item(X) command includes the following steps:

3. Find the address of the disk block that contains item X.

4. Copy that disk block into a buffer in main memory (if that disk block is not already in
some main memory buffer).

5. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:
Find the address of the disk block that contains item X.

6. Copy that disk block into a buffer in main memory (if that disk block is not already in
some main memory buffer).

7. Copy item X from the buffer to the program variable named X.

Executing a write_item(X) command includes the following steps:

6. Find the address of the disk block that contains item X.

7. Copy that disk block into a buffer in main memory (if that disk block is not already in
some main memory buffer).

8. Copy item X from the program variable named X into its correct location in the buffer.

9. Store the updated block from the buffer back to disk (either immediately or at some later
point in time).

5.3 Why Concurrency Control Is Needed

 The Lost Update Problem.

This problem occurs when two transactions that access the same database items have their

operations interleaved in a way that makes the value of some database item incorrect. Suppose

that transactions T1 and T2 are submitted at approximately the same time, and suppose that their

operations are interleaved then the final value of item X is incorrect, because T2 reads the value

of X before T1 changes it in the database, and hence the updated value resulting from T1 is lost.

For example, if X = 80 at the start (originally there were 80 reservations on the flight), N = 5 (T1

transfers 5 seat reservations from the flight corresponding to X to the flight corresponding to Y),

and M = 4 (T2 reserves 4 seats on X), the final result should be X = 79; but in the interleaving of

operations, it is X = 84 because the update in T1 that removed the five seats from X was lost

The Temporary Update (or Dirty Read) Problem.

This problem occurs when one transaction updates a database item and then the transaction fails
for some reason. The updated item is accessed by another transaction before it is changed back to
its original value. Figure 19.03(b) shows an example where T1 updates item X and then fails
before completion, so the system must change X back to its original value. Before it can do so,
however, transaction T2 reads the "temporary" value of X, which will not be recorded
permanently in the database because of the failure of T1. The value of item X that is read by T2 is
called dirty data, because it has been created by a transaction that has not completed and
committed yet; hence, this problem is also known as the dirty read problem.

 The Incorrect Summary Problem.

If one transaction is calculating an aggregate summary function on a number of records while

other transactions are updating some of these records, the aggregate function may calculate some

values before they are updated and others after they are updated. For example, suppose that a

transaction T3 is calculating the total number of reservations on all the flights; meanwhile,

transaction T1 is executing. If the interleaving of operations shown in Figure 19.03(c) occurs, the

result of T3 will be off by an amount N because T3 reads the value of X after N seats have been

subtracted from it but reads the value of Y before those N seats have been added to it.

Another problem that may occur is called unrepeatable read, where a transaction T reads an

item twice and the item is changed by another transaction T' between the two reads. Hence, T

receives different values for its two reads of the same item. This may occur, for example, if

during an airline reservation transaction, a customer is inquiring about seat availability on several

flights. When the customer decides on a particular flight, the transaction then reads the number of

seats on that flight a second time before completing the reservation.

5.4 Why Recovery Is Needed

Whenever a transaction is submitted to a DBMS for execution, the system is responsible for
making sure that either (1) all the operations in the transaction are completed successfully and

their effect is recorded permanently in the database, or (2) the transaction has no effect
whatsoever on the database or on any other transactions. The DBMS must not permit some

operations of a transaction T to be applied to the database while other operations of T are not.

This may happen if a transaction fails after executing some of its operations but before executing
all of them.

Types of Failures

Failures are generally classified as transaction, system, and media failures. There are several
possible reasons for a transaction to fail in the middle of execution:

1. A computer failure (system crash): A hardware, software, or network error occurs in the

computer system during transaction execution. Hardware crashes are usually media
failures—for example, main memory failure.

2. A transaction or system error: Some operation in the transaction may cause it to fail,
such as integer overflow or division by zero. Transaction failure may also occur because
of erroneous parameter values or because of a logical programming error. In addition, the
user may interrupt the transaction during its execution.

3. Local errors or exception conditions detected by the transaction: During transaction

execution, certain conditions may occur that necessitate cancellation of the transaction.
For example, data for the transaction may not be found. Notice that an exception
condition, such as insufficient account balance in a banking database, may cause a
transaction, such as a fund withdrawal, to be cancelled. This exception should be
programmed in the transaction itself, and hence would not be considered a failure.

4. Concurrency control enforcement: The concurrency control method (see Chapter 20)

may decide to abort the transaction, to be restarted later, because it violates serializability
(see Section 19.5) or because several transactions are in a state of deadlock.

5. Disk failure: Some disk blocks may lose their data because of a read or write malfunction
or because of a disk read/write head crash. This may happen during a read or a write
operation of the transaction.

6. Physical problems and catastrophes: This refers to an endless list of problems that
includes power or air-conditioning failure, fire, theft, sabotage, overwriting disks or tapes
by mistake, and mounting of a wrong tape by the operator.

Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6. Whenever a failure

of type 1 through 4 occurs, the system must keep sufficient information to recover from the
failure. Disk failure or other catastrophic failures of type 5 or 6 do not happen frequently; if they

do occur, recovery is a major task.

The concept of transaction is fundamental to many techniques for concurrency control and
recovery from failures.

5.5 Transaction and System Concepts

Transaction States and Additional Operations

A transaction is an atomic unit of work that is either completed in its entirety or not done at all.
For recovery purposes, the system needs to keep track of when the transaction starts, terminates,

and commits or aborts (see below). Hence, the recovery manager keeps track of the following
operations:

o BEGIN_TRANSACTION: This marks the beginning of transaction execution.
o READ or WRITE: These specify read or write operations on the database items

that are executed as part of a transaction.

o END_TRANSACTION: This specifies that READ and WRITE transaction
operations have ended and marks the end of transaction execution. However, at
this point it may be necessary to check whether the changes introduced by the
transaction can be permanently applied to the database (committed) or whether the
transaction has to be aborted because it violates serializability (see Section 19.5)
or for some other reason.

o COMMIT_TRANSACTION: This signals a successful end of the transaction so
that any changes (updates) executed by the transaction can be safely committed
to the database and will

not be undone.

o ROLLBACK (or ABORT): This signals that the transaction has ended
unsuccessfully, so that any changes or effects that the transaction may have applied to

the database must be undone.

Shows a state transition diagram that describes how a transaction moves through its execution

states. A transaction goes into an active state immediately after it starts execution, where it can
issue READ and WRITE operations. When the transaction ends, it moves to the partially committed

state. At this point, some recovery protocols need to ensure that a system failure will not result in

an inability to record the changes of the transaction permanently (usually by recording changes in
the system log). Once this check is successful, the transaction is said to have reached its commit

point and enters the committed state. Once a transaction is committed, it has concluded its
execution successfully and all its changes must be recorded permanently in the database.

5.6 The System Log

 To be able to recover from failures that affect transactions, the system maintains a log to keep

track of all transactions that affect the values of database items.

 Log records consists of the following information (T refers to a unique transaction_id):

1. [start_transaction, T]: Indicates that transaction T has started execution.
2. [write_item, T,X,old_value,new_value]: Indicates that transaction T has changed the value

of database item X from old_value to new_value.

3. [read_item, T,X]: Indicates that transaction T has read the value of database item X.

4. [commit,T]: Indicates that transaction T has completed successfully, and affirms that its
effect can be committed (recorded permanently) to the database.

5. [abort,T]: Indicates that transaction T has been aborted.

5.7 Desirable Properties of Transactions

Transactions should posses the following (ACID) properties:

Transactions should possess several properties. These are often called the ACID properties, and
they should be enforced by the concurrency control and recovery methods of the DBMS. The
following are the ACID properties:

1. Atomicity: A transaction is an atomic unit of processing; it is either performed in its entirety or

not performed at all.

2. Consistency preservation: A transaction is consistency preserving if its complete execution

take(s) the database from one consistent state to another.

3. Isolation: A transaction should appear as though it is being executed in isolation from other
transactions. That is, the execution of a transaction should not be interfered with by any other
transactions executing concurrently.

4. Durability or permanency: The changes applied to the database by a committed transaction
must persist in the database. These changes must not be lost because of any failure.

The atomicity property requires that we execute a transaction to completion. It is the

responsibility of the transaction recovery subsystem of a DBMS to ensure atomicity. If a

transaction fails to complete for some reason, such as a system crash in the midst of transaction
execution, the recovery technique must undo any effects of the transaction on the database.

5.8 Schedules and Recoverability

A schedule (or history) S of n transactions T1, T2, ..., Tn is an ordering of the operations of the

transactions subject to the constraint that, for each transaction Ti that participates in S, the
operations of Ti in S must appear in the same order in which they occur in Ti. Note, however,

that operations from other transactions Tj can be interleaved with the operations of Ti in S. For

now, consider the order of operations in S to be a total ordering, although it is possible
theoretically to deal with schedules whose operations form partial orders.

Similarly, the schedule for Figure 19.03(b), which we call Sb, can be written as follows, if we
assume that transaction T1 aborted after its read_item(Y) operation:

Two operations in a schedule are said to conflict if they satisfy all three of the following
conditions:

1. they belong to different transactions;

2. they access the same item X; and

3. at least one of the operations is a write_item(X).

For example, in schedule , the operations conflict, as do the operations

), and the operations w1(X) and w2(X). However, the operations r1(X) and r2(X)

do not conflict, since they are both read operations; the operations w2(X) and w1(Y) do not

conflict, because they operate on distinct data items X and Y; and the operations r1(X) and w1(X)

do not conflict, because they belong to the same transaction.

A schedule S of n transactions T1, T2, ..., Tn, is said to be a complete schedule if the following
conditions hold:

1. The operations in S are exactly those operations in T1, T2, ..., Tn, including a commit or abort

operation as the last operation for each transaction in the schedule.

2. For any pair of operations from the same transaction Ti, their order of appearance in S is the
same as their order of appearance in Ti.

3. For any two conflicting operations, one of the two must occur before the other in the schedule.

5.10 Characterizing Schedules Based on Recoverability

once a transaction T is committed, it should never be necessary to roll back T. The schedules that
theoretically meet this criterion are called recoverable schedules and those that do not are called
nonrecoverable, and hence should not be permitted.

A schedule S is recoverable if no transaction T in S commits until all transactions T' that have
written an item that T reads have committed. A transaction T reads from transaction T in a

schedule S if some item X is first written by and later read by T. In addition, should not

have been aborted before T reads item X, and there should be no transactions that write X after

 writes it and before T reads it (unless those transactions, if any, have aborted before T

reads

X).

Consider the schedule given below, which is the same as schedule except that two

commit operations have been added to :

)

 is not recoverable, because T2 reads item X from T1, and then T2 commits before T1 commits.

If T1 aborts after the c2 operation in , then the value of X that T2 read is no longer valid and T2

must be aborted after it had been committed, leading to a schedule that is not recoverable. For the

schedule to be recoverable, the c2 operation in must be postponed until

after T1 commits. If T1 aborts instead of committing, then T2 should also abort as shown in Se,
because the value of X it read is no longer valid.

In a recoverable schedule, no committed transaction ever needs to be rolled back. However, it is

possible for a phenomenon known as cascading rollback (or cascading abort) to occur, where an
uncommitted transaction has to be rolled back because it read an item from a transaction that failed.

Serializability of Schedules

 If no interleaving of operations is permitted, there are only two possible arrangement for

transactions T1 and T2.

1. Execute all the operations of T1 (in sequence) followed by all the operations of T2 (in
sequence).

2. Execute all the operations of T2 (in sequence) followed by all the operations of T1

 A schedule S is serial if, for every transaction T all the operations of T are executed consecutively
in the schedule.

 A schedule S of n transactions is serializable if it is equivalent to some serial schedule of the same n

transactions.

5.11 Transaction Support in SQL

 An SQL transaction is a logical unit of work (i.e., a single SQL statement).

 The access mode can be specified as READ ONLY or READ WRITE. The default is READ
WRITE, which allows update, insert, delete, and create commands to be executed.

 The diagnostic area size option specifies an integer value n, indicating the number of
conditions that can be held simultaneously in the diagnostic area.

 The isolation level option is specified using the statement ISOLATION LEVEL.

 the default isolation level is SERIALIZABLE.

A sample SQL transaction might look like the following:

EXEC SQL WHENEVER SQLERROR GOTO UNDO;
EXEC SQL SET TRANSACTION

READ WRITE

DIAGNOSTICS SIZE 5

ISOLATION LEVEL SERIALIZABLE;

EXEC SQL INSERT INTO EMPLOYEE (FNAME, LNAME, SSN, DNO, SALARY)

VALUES ('Jabbar', 'Ahmad', '998877665', 2, 44000);

EXEC SQL UPDATE EMPLOYEE
SET SALARY = SALARY * 1.1 WHERE DNO = 2;

EXEC SQL COMMIT;

GOTO THE_END;

UNDO: EXEC SQL ROLLBACK;

THE_END: . . . ;

Concurrency Control in Databases

Two-Phase Locking Techniques for Concurrency Control:

The main techniques used to control concurrent execution of transactions are based on the

concept of locking data items. A lock is a variable associated with a data item that describes the

status of the item with respect to possible operations that can be applied to it. Generally, there is

one lock for each data item in the database. Locks are used as a means of synchronizing the

access by concurrent transactions to the database items.

Types of Locks and System Lock Tables:

Locks are of two kinds −

Binary Locks −

Shared/exclusive

Binary Locks: A binary lock can have two states or values: locked and unlocked (or 1 and 0,

for simplicity). A distinct lock is associated with each database item X. If the value of the lock

on X is 1, item X cannot be accessed by a database operation that requests the item. If the value

of the lock on X is 0, the item can be accessed when requested, and the lock value is changed to

1. We refer to the current value (or state) of the lock associated with item X as lock(X).

lock_item(X):

B:

if LOCK(X) = 0 (*item is unlocked*)

then LOCK(X) ←1 (*lock the item*)

else

begin

wait (until LOCK(X) = 0

and the lock manager wakes up the transaction);

go to B

end;

unlock_item(X):

LOCK(X) ← 0; (* unlock the item *)

if any transactions are waiting then wakeup one of the waiting transactions;

 Two operations, lock_item and unlock_item, are used with binary locking. A

transaction requests access to an item X by first issuing a lock_item(X) operation.

If LOCK(X) = 1, the transaction is forced to wait. If LOCK(X) = 0, it is set to 1 (the

transaction locks the item) and the transaction is allowed to access item X. When the

transaction is through using the item, it issues an unlock_item(X) operation, which sets

LOCK(X) back to 0 (unlocks the item) so that X may be accessed by other transactions.

Hence, a binary lock enforces mutual exclusion on the data item.

When we use the binary locking scheme, the system must enforce the following rules:

1. A transaction T must issue the operation lock_item(X) before any read_item(X) or

write_item(X) operations are performed in T.

2. A transaction T must issue the operation unlock_item(X) after all read_item(X)

and write_item(X) operations are completed in T.

3. A transaction T will not issue a lock_item(X) operation if it already holds

the lock on item X.

4. A transaction T will not issue an unlock_item(X) operation unless it already holds

the lock on item X.

These rules can be enforced by the lock manager module of the DBMS.

Shared/Exclusive (or Read/Write) Locks: This type of locking mechanism differentiates the

locks based on their uses. If a lock is acquired on a data item to perform a write operation, it is

an exclusive lock. Allowing more than one transaction to write on the same data item would

lead the database into an inconsistent state. Read locks are shared because no data value is

being changed.

read_lock(X):

B:

if LOCK(X) = ―unlocked‖

then begin LOCK(X) ← ―read-locked‖;

no_of_reads(X) ← 1

end

else if LOCK(X) = ―read-locked‖

then no_of_reads(X) ← no_of_reads(X) + 1 else

begin

wait (until LOCK(X) = ―unlocked‖

and the lock manager wakes up the transaction);

go to B

end;

write_lock(X):

B:

if LOCK(X) = ―unlocked‖

then LOCK(X) ← ―write-locked‖

else begin

wait (until LOCK(X) = ―unlocked‖

and the lock manager wakes up the transaction);

go to B

end;

unlock (X):

if LOCK(X) = ―write-locked‖

then begin LOCK(X) ← ―unlocked‖;

wakeup one of the waiting transactions, if any end

else it LOCK(X) = ―read-locked‖

then begin

no_of_reads(X) ← no_of_reads(X) −1;

if no_of_reads(X) = 0

then begin LOCK(X) = ―unlocked‖;

wakeup one of the waiting transactions, if any end

end;

Above algorithm shows Locking and unlocking operations for two mode

(read/write, or shared/exclusive) locks.

When we use the shared/exclusive locking scheme, the system must enforce the following

rules:

1. A transaction T must issue the operation read_lock(X) or write_lock(X) before any

read_item(X) operation is performed in T.

2. A transaction T must issue the operation write_lock(X) before any

write_item(X) operation is performed in T.

3. A transaction T must issue the operation unlock(X) after all read_item(X) and

write_item(X) operations are completed in T.

4. A transaction T will not issue a read_lock (X) operation if it already holds a read

(shared) lock or a write (exclusive) lock on item X. This rule may be relaxed for

downgrading of locks, as we discuss shortly.

5. A transaction T will not issue a write_lock (X) operation if it already holds a read

(shared) lock or write (exclusive) lock on item X. This rule may also be relaxed for

upgrading of locks, as we discuss shortly.

6. A transaction T will not issue an unlock (X) operation unless it already holds a

read (shared) lock or a write (exclusive) lock on item X.

Conversion (Upgrading, Downgrading) of Locks: It is desirable to relax conditions 4 and 5 in

the preceding list in order to allow lock conversion; that is, a transaction that already holds a

lock on item X is allowed under certain conditions to convert the lock from one locked state to

another.

Guaranteeing Serializability by Two-Phase Locking:

A transaction is said to follow the two-phase locking protocol if all locking operations (read_lock,

write_lock) precede the first unlock operation in the transaction. Such a transaction can be divided

into two phases: an expanding or growing (first) phase, during which new locks on items can be

acquired but none can be released; and a shrinking (second) phase, during which existing locks

can be released but no new locks can be acquired. If lock conversion is allowed, then upgrading of

locks (from read-locked to write-locked) must be done during the expanding phase, and

downrading of locks (from write-locked to read-locked) must be done in the shrinking phase.

Basic, Conservative, Strict, and Rigorous Two-Phase Locking:

There are a number of variations of two-phase locking (2PL).

The technique just described is known as basic 2PL.

o A variation known as conservative 2PL (or static 2PL) requires a transaction to lock

all the items it accesses before the transaction begins execution, by predeclaring its

read-set and write-set.

o In practice, the most popular variation of 2PL is strict 2PL, which

guarantees strict schedules.

o In this variation, a transaction T does not release any of its exclusive

(write) locks until after it commits or aborts.

Hence, no other transaction can read or write an item that is written by Tunless T has committed,

leading to a strict schedule for recoverability.

o Strict 2PL is not deadlock-free.

o A more restrictive variation of strict 2PL is rigorous 2PL, which also

guarantees strict schedules.

o In this variation, a transaction T does not release any of its locks (exclusive or shared)

until after it commits or aborts, and so it is easier to implement than strict 2PL.

Dealing with Deadlock and Starvation:

o Deadlock occurs when each transaction T in a set of two or

more transactions is waiting for some item that is locked by some

other transaction T′ in the set.

o Hence, each transaction in the set is in a waiting queue, waiting

for one of the other transactions in the set to release the lock on an item.

o But because the other transaction is also waiting, it will never release

the lock.

http://www.pdfwatermarkremover.com/buy.htm
http://www.pdfwatermarkremover.com/buy.htm

A simple example is shown in Figure 21.5(a), where the two transactions T1′ and T2′

are deadlocked in a partial schedule; T1′ is in the waiting queue for X, which is locked

by T2′, whereas T2′ is in the waiting queue for Y, which is locked by T1′. Meanwhile,

neither T1′ nor T2′ nor any other transaction can access items X and Y.

Above Figure Illustrating the deadlock problem. (a) A partial schedule of T1′ and T2′

that is in a state of deadlock. (b) A wait-for graph for the partial schedule in (a).

Deadlock Prevention Protocols:

One way to prevent deadlock is to use a deadlock prevention protocol.

One deadlock prevention protocol, which is used in conservative two-phase locking,

requires that every transaction lock all the items it needs in advance (which is generally not

a practical assumption)—if any of the items cannot be obtained, none of the items are

locked. Rather, the transaction waits and then tries again to lock all the items it needs.

Obviously, this solution further limits concurrency.

A second protocol, which also limits concurrency, involves ordering all the items in the

database and making sure that a transaction that needs several items will lock them according

to that order. This requires that the programmer (or the system) is aware of the chosen order

of the items, which is also not practical in the database context.

Two schemes that prevent deadlock are called wait-die and wound-wait.

Wait-die: In wait-die, an older transaction is allowed to wait for a younger transaction,

whereas a younger transaction requesting an item held by an older transaction is

aborted and restarted.

Wound-wait: The wound-wait approach does the opposite: A younger transaction is

allowed to wait for an older one, whereas an older transaction requesting an item held by a

younger transaction preempts the younger transaction by aborting it.

http://www.pdfwatermarkremover.com/buy.htm

Another group of protocols that prevent deadlock do not require timestamps. These include the no

waiting (NW) and cautious waiting (CW) algorithms.

No waiting algorithm: In the no waiting algorithm, if a transaction is unable to obtain a

lock, it is immediately aborted and then restarted after a certain time delay without

checking whether a deadlock will actually occur or not. In this case, no transaction ever

waits, so no deadlock will occur. However, this scheme can cause transactions to abort and

restart needlessly.

Cautious waiting algorithm: The cautious waiting algorithm was proposed to try to

reduce the number of needless aborts/restarts.

 Deadlock Detection:

o An alternative approach to dealing with deadlock is deadlock detection, where the

system checks if a state of deadlock actually exists.

o This solution is attractive if we know there will be little interference among

the transactions—that is, if different

transactions will rarely access the same items at the same time.

o This can happen if the transactions are short and each transaction

locks only a few items, or if the transaction load is light.

o On the other hand, if transactions are long and each transaction uses many items, or if

the transaction load is heavy, it may be advantageous to use a deadlock prevention

scheme.

 Timeouts:

Another simple scheme to deal with deadlock is the use of timeouts.This method is practical

because of its low overhead and simplicity.In this method, if a transaction waits for a period

longer than a system-defined timeout period, the system assumes that the transaction may be

deadlocked and aborts it—regardless of whether a deadlock actually exists.

 Starvation:

Another problem that may occur when we use locking is starvation, which occurs when a transaction cannot

proceed for an indefinite period of time while other transactions in the system continue normally.

This may occur if the waiting scheme for locked items is unfair in that it gives priority to some

transactions over others.

 One solution for starvation is to have a fair waiting scheme, such as using a

first-come-first-served queue; transactions are enabled to lock an item in the order in which

they originally requested the lock.

 Another scheme allows some transactions to have priority over others but

increases the priority of a transaction the longer it waits, until it eventually gets the

highest priority and proceeds.

 Starvation can also occur because of victim selection if the algorithm selects the same

transaction as victim repeatedly, thus causing it to abort and never finish execution.

 The algorithm can use higher priorities for transactions that have been aborted

multiple times to avoid this problem.

 The wait-die and wound-wait schemes discussed previously avoid starvation,

because they restart a transaction that has been aborted with its same original timestamp, so

the possibility that the same transaction is aborted repeatedly is slim.

Concurrency Control Based on Timestamp Ordering

 Timestamp

A timestamp is a unique identifier created by the DBMS to identify a transaction. Timestamp

ordering do not use locks; hence, deadlocks cannot occur.

Whenever a transaction begins, it receives a timestamp. This timestamp indicates the order in which

the transaction must occur, relative to the other transactions.

So, given two transactions that affect the same object, the operation of the transaction with the

earlier timestamp must execute before the operation of the transaction with the later timestamp.

However, if the operation of the wrong transaction is executed first, then it is aborted and the

transaction must be restarted.

Every object in the database has a read timestamp, which is updated whenever the object's data is

read, and a write timestamp, which is updated whenever the object's data is changed.

Generation of time stamp

Timestamps can be generated in several ways.

1. To use a counter that is incremented each time its value is assigned to a transaction.

The transaction timestamps are numbered 1, 2, 3, … in this scheme. A computer counter has a

finite maximum value, so the system must periodically reset the counter to zero when no

transactions are executing for some short period of time.

http://www.pdfwatermarkremover.com/buy.htm

2. Another way is to implement timestamps is to use the current date/time value of the system clock

and ensure that no two timestamp values are generated during the same tick of the clock.

2.2 Time Stamp Ordering Algorithm

The idea for this scheme is to order the transactions based on their timestamps.

A schedule in which the transactions participate is serializable, and the only equivalent serial

schedule permitted has the transactions in order of their timestamp values. This is called timestamp

ordering(TO).

The algorithm allows interleaving of transaction operations, but it must ensure that for each pair of

conflicting operations in the schedule, the order in which the item is accessed must not violate the

serializability order.

To do this, the algorithm associates with each database item X to timestamp (TS)

VALUES:

1. Read –TS (X): The read timestamp of item X; this is the largest time stamp among all the

timestamps of transactions that have successfully read item – X i.e. Read – TS

(X) = TS (T). Where T is the youngest transaction that has read X successfully.

2. Write – TS (X): The write timestamp of item X; this is the largest of all the timestamps of

transactions that have successfully written item X – i.e., write –TS (X) = TS(T), where T is the

youngest transaction that has written X successfully.

Basic Timestamp Ordering (TO)

Wherever some transaction T tries to issue a read- item (X) or write-item (X) operation, the basic

TO (Time Ordering) compares the timestamp of T with read – TS

(X) and write – TS (X) to ensure that the timestamp order of transaction is not violate.

If this order is violated, then transaction is aborted resubmitted to the system as a new

transaction with a new timestamp.

If T is aborted and rolled back, any transaction T1 that may have used a value written by T must also

be rolled back similarly, any transaction T2 that may have used a value written by T1 must also be

rolled back, and so on. This effect is known as cascading

rollback and is one of the problems associated with basic TO, since the schedules produced are

not are not guaranteed to be recoverable.

The concurrency control algorithm must check whether conflicting operations violate the time stamp

ordering in the following two cases:

1. When a transaction T issues a write_item(X) operation, the following check is performed:

a. If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then abort and roll back T and

reject the operation. This should be done because some younger transaction with a

timestamp greater than TS(T)—and hence after T in the timestamp ordering—has

already read or written the value of item X before T had a chance to write X, thus

violating the timestamp ordering.

b. If the condition in part (a) does not occur, then execute the

write_item(X) operation of T and set write_TS(X) to TS(T).

2. When a transaction T issues a read_item(X) operation, the following check is performed:

a. If write_TS(X) > TS(T), then abort and roll back T and reject the operation. This

should be done because some younger transaction with timestamp greater than

TS(T)—and hence after T in the timestamp ordering—has already written the value

of item X before T had a chance to read X.

b. If write_TS(X) ≤ TS(T), then execute the read_item(X) operation of T and set

read_TS(X) to the larger of TS(T) and the current read_TS(X).

Strict Timestamp Ordering (TO)

A variation of basic TO is called Strict TO which ensures that the schedules are both strict (for

easy recoverability) and (conflict) serializable.

In this variation, a transaction T that issues a read_item(X) or write_item(X) such that

TS(T)>write_TS(X) has its read or write operation delayed until the transaction T1 that wrote the

value of X (hence TS(T1) =write_TS(X)) has committed or aborted.

To implement this algorithm, it is necessary to simulate the locking of an item X that has been

written by transaction T1 until T1 is either committed or aborted. This algorithm does not cause

deadlock, since T waits T1 only if TS(T)>TS(T1).

Thomas Write Rule

A modification of the basic TO algorithm, known as Thomas’s write rule, does not enforce

conflict serializability but it rejects some write operations by modifying the checks for the

write_item(X) operation as follows:

1. If read_TS(X)>TS(T) (read timestamp is greater than timestamp transaction), then abort and

rollback T and reject the operation.

2. If Write_TS(X) > TS(T) (write timestamp is greater than timestamp transaction), then do not

execute the write operation but continue processing. Because some transaction with a

timestamp greater than TS(T) would have already written the value of X.

3. If neither the condition in part (1) nor the condition in part (2) occurs, then execute the

write_item(X) operation of T and set write_TS(X) to TS(T).

4 Validation (Optimistic) Techniques and Snapshot Isolation Concurrency Control

In all concurrency control techniques we have discussed so far, a certain degree of checking is done before a

database operation can be executed. For example, in locking, a check is done to determine whether the item

being accessed is locked.

In optimistic concurrency control techniques, also known as validation or certification techniques, no

checking is done while the transaction is executing.

4.1 Validation-Based (Optimistic) Concurrency Control

In this schema, updates in the transaction are not applied directly to the database items on the disk until the

transaction reaches its end and is validated. During transaction execution, all updates are applied to local

copies of the data items that are kept for the transaction. At the end of transaction execution, a validation

phase checks whether any of the transaction’s updates violate serializability. Certain information needed by

the validation phase must be kept by the system. If serializability is not violated, the transaction is

committed and the database is updated from the local copies; otherwise the transaction is aborted and

restarted later.

There are three phases for this concurrency control protocol:

1. Read phase. A transaction can read values of committed data items from the database.

However, updates are applied only to local copies (versions) of the data items kept in the

transaction workspace.

2. Validation phase. Checking is performed to ensure that serializability will not be violated if

the transaction updates are applied to the database.

3. Write phase. If the validation phase is successful, the transaction updates are applied to the

database; otherwise, the updates are discarded and the transaction is restarted.

The idea behind optimistic concurrency control is to do all the checks at once; hence, transaction

execution proceeds with a minimum of overhead until the validation phase is reached.

5 Granularity of Data Items and Multiple Granularity Locking

All concurrency control techniques assume that the database is formed of a number of named data

items. A database item could be chosen to be one of the following:

■ A database record

■ A field value of a database record

■ A disk block

■ A whole file

■ The whole database

5.1 Granularity Level Considerations for Locking

The size of data items is often called the data item granularity. Fine

granularity => Small item sizes

Coarse granularity => Large item sizes

Larger the data item size is, the lower the degree of concurrency permitted. For example:

If the data item size is a disk block, a transaction T that needs to lock a record B must lock

the whole disk block X that contains B because a lock is associated with the whole data item

(block).

If another transaction S wants to lock a different record C that happens to reside in the

same block X in a conflicting lock mode, it is forced to wait.

If the data item size was a single record, transaction S would be able to proceed,

because it would be locking a different data item (record).

Smaller the data item size is, the more the number of items in the database.

More lock and unlock operations will be performed, causing a higher overhead.

Hence, more storage space will be required for the lock table.

http://www.pdfwatermarkremover.com/buy.htm

The best item size depends on the types of transactions involved.

5.2 Multiple Granularity Level Locking

The above figure shows a simple granularity hierarchy with a database containing two files (f1, f2), each

file containing several disk pages and each page containing several records. This can be used to illustrate a

multiple granularity level 2PL protocol, where a lock can be requested at any level. However, additional

types of locks will be needed to support such a protocol efficiently.

Suppose transaction T1 wants to update all the records in file f1,and T1 requests and is granted an

exclusive lock for f1.Then all of f1’s pages (p11 through p1n)—and the records contained on those

pages—are locked in exclusive mode.

This is beneficial for T1 because setting a single file-level lock is more efficient than setting n

page-level locks or having to lock each individual record.

Now suppose another transaction T2 only wants to read record r1nj from page p1n of file f1; then T2

would request a shared record-level lock on r1nj.

However, the database system (that is, the transaction manager or more specifically the lock

manager) must verify the compatibility of the requested lock with already held locks.

One way to verify this is to traverse the tree from the leaf r1nj to p1n to f1 to db. If at any time a

conflicting lock is held on any of those items, then the lock request for r1nj is denied and T2 is

blocked and must wait.

This traversal would be fairly efficient.

If transaction T2’s request came before transaction T1’s request, the shared record lock is granted

to T2 for r1nj, but when T1’s file-level lock is requested, it is quite difficult for the lock manager

to check all nodes (pages and records) that are descendants of node f1 for a lock conflict.

This would be very inefficient and would defeat the purpose of having multiple granularity

level locks.

To make multiple granularity level locking practical, additional types of locks, called intention

locks, are needed. The 3 types are:

1. Intention-shared (IS) indicates that one or more shared locks will be requested on some descendant

node(s).

2. Intention-exclusive (IX) indicates that one or more exclusive locks will be requested on some

descendant node(s).

3. Shared-intention-exclusive (SIX) indicates that the current node is locked in shared mode but that one or

more exclusive locks will be requested on some descendant node(s).

The multiple granularity locking (MGL) protocol consists of the following rules:

1. The lock compatibility (based on Figure 22.8) must be adhered to.

2. The root of the tree must be locked first, in any mode.

3. A node N can be locked by a transaction T in S or IS mode only if the parent node N is already

locked by transaction T in either IS or IX mode.

4. A node N can be locked by a transaction T in X, IX, or SIX mode only if the parent of node Nis already

locked by transaction Tin either IX or SIX mode.

5. A transaction T can lock a node only if it has not unlocked any node (to enforce the 2PL protocol).

6. A transaction T can unlock a node, N, only if none of the children of node N are currently locked by T.

Rule 1 simply states that conflicting locks cannot be granted.

Rules 2, 3, and 4 state the conditions when a transaction may lock a given node in any of the lock

modes.

Rules 5 and 6 of the MGL protocol enforce 2PL rules to produce serializable schedules.

To illustrate the MGL protocol with the database hierarchy in Figure 22.7, consider the following

three transactions:

1. T1 wants to update record r111 and record r211.

2. T2 wants to update all records on page p12.

3. T3 wants to read record r11j and the entire f2 file.

Recovery Concepts

Write-Ahead Logging, Steal/No-Steal, and Force/No-Force:

When in-place updating is used, it is necessary to use a log for recovery.

In this case, the recovery mechanism must ensure that the BFIM of the data item is recorded in the

appropriate log entry and that the log entry is flushed to disk before the before image (BFIM) is

overwritten with the after image(AFIM) in the database on disk.

This process is generally known as write-ahead logging and is necessary so we can UNDO the

operation if this is required during recovery.

A REDO-type log entry includes the new value (AFIM) of the item written by the operation

since this is needed to redo the effect of the operation from the log (by setting the item value in

the database on disk to its AFIM).

The UNDO-type log entries include the old value (BFIM) of the item since this is needed to undo

the effect of the operation from the log (by setting the item value in the database back to its BFIM).

With the write-ahead logging approach, the log buffers (blocks) that contain the associated log

records for a particular data block update must first be written to disk before the data block itself

can be written back to disk from its main memory buffer.

Standard DBMS recovery terminology includes the terms steal/no-steal and force/no-force, which specify

the rules that govern when a page from the database cache can be written to disk:

http://www.pdfwatermarkremover.com/buy.htm

If a cache buffer page updated by a transaction cannot be written to disk before the transaction

commits, the recovery method is called a no-steal approach. The pin-unpin bit will be set to 1

(pin) to indicate that a cache buffer cannot be written back to disk.

On the other hand, if the recovery protocol allows writing an updated buffer before the transaction

commits, it is called steal.

The no-steal rule means that UNDO will never be needed during recovery, since a committed

transaction will not have any of its updates on disk before it commits.

If all pages updated by a transaction are immediately written to disk before the transaction

commits, the recovery approach is called a force approach. Otherwise, it is called no-force.

The force rule means that REDO will never be needed during recovery, since any committed

transaction will have all its updates on disk before it is committed.

The advantage of steal is that it avoids the need for a very large buffer space to store all updated

pages in memory.

The advantage of no-force is that an updated page of a committed transaction may still be in the

buffer when another transaction needs to update it, thus eliminating the I/O cost to write that page

multiple times to disk and possibly having to read it again from disk. This may provide a

substantial saving in the number of disk I/O operations when a specific page is updated heavily by

multiple transactions.

22.1.4 Checkpoints in the System Log and Fuzzy Checkpointing:

Another type of entry in the log is called a checkpoint. A [checkpoint, list of active transactions]

record is written into the log periodically at that point when the system writes out to the database on

disk all DBMS buffers that have been modified.

The recovery manager of a DBMS must decide at what intervals to take a checkpoint. The interval

may be measured in time.

A checkpoint consists of the following actions:

1. Suspend execution of transactions temporarily.

2. Force-write all main memory buffers that have been modified to disk.

3. Write a [checkpoint] record to the log, and force-write the log to disk.

4. Resume executing transactions.

As a consequence of step 2, a checkpoint record in the log may also include additional

information, such as a list of active transaction ids, and the locations

(addresses) of the first and most recent (last) records in the log for each active transaction.

fuzzy checkpointing: In this technique, the system can resume transaction processing after a

[begin_checkpoint] record is written to the log without having to wait for step

2 to finish. When step 2 is completed, an [end_checkpoint, …] record is written in the log with

the relevant information collected during checkpointing. However, until step 2 is completed, the

previous checkpoint record should remain valid.

22.1.5 Transaction Rollback and Cascading Rollback

1. If a transaction fails for whatever reason after updating the database, but before the transaction

commits, it may be necessary to roll back the transaction.

2. If any data item values have been changed by the transaction and written to the database on

disk, they must be restored to their previous values (BFIMs).

3. The undo-type log entries are used to restore the old values of data items that must be rolled back.

4. If a transaction T is rolled back, any transaction S that has, in the interim, read the value of

some data item X written by T must also be rolled back.

5. Similarly, once S is rolled back, any transaction R that has read the value of some data item Y

written by S must also be rolled back. This phenomenon is called cascading rollback, and it can

occur when the recovery protocol ensures recoverable schedules but does not ensure cascadeless

schedules.

6. Cascading rollback can be complex and time-consuming. So almost all recovery

mechanisms are designed then cascading rollback is never required.

http://www.pdfwatermarkremover.com/buy.htm
http://www.pdfwatermarkremover.com/buy.htm

7. The below figure shows an example where cascading rollback is required. The read and write

operations of three individual transactions are shown fig(a) and fig (b), the system log at the point

of a system crash for a particular execution schedule of these transactions.

8. The values of data items A, B, C, and D, which are used by the transactions, are shown to the right

of the system log entries. We assume that the original item values, shown in the first line, are A =

30, B = 15, C = 40, and D = 20. At the point of system failure, transaction T3 has not reached its

conclusion and must be rolled back.

9. The WRITE operations of T3, marked by a single * in fig(b), are the T3 operations that are undone

during transaction rollback. The fig(c) graphically shows the operations of the different transactions

along the time axis.

(a) The read and write operations of three transactions

(b) System log at point crashes

(c) Operations before the crash

We must now check for cascading rollback. From fig(c), we see that transaction T2 reads the value

of item B that was written by transaction T3; this can also be determined by examining the log. Because T3

is rolled back, T2 must now be rolled back, too. The WRITE operations of T2, marked by ** in the log, are

the ones that are undone. Note:

 Only write_item operations need to be undone during transaction rollback.

 read_item operations are recorded in the log only to determine whether cascading rollback of

additional transactions is necessary.

 In practice, cascading rollback of transactions is never required because practical recovery

methods guarantee cascadeless or strict schedules.

 Hence, there is also no need to record any read_item operations in the log because these are

needed only for determining cascading rollback.

22.1.6 Transaction Actions That Do Not Affect the Database

1. In general, a transaction will have actions that do not affect the database, such as generating

and printing messages or reports from information retrieved from the database.

http://www.pdfwatermarkremover.com/buy.htm

2. If a transaction fails before completion, we may not want the user to get these reports, since

the transaction has failed to complete.

3. If such erroneous reports are produced, part of the recovery process would have to inform the user

that these reports are wrong, since the user may take an action that is based on these reports and

that affects the database.

4. Hence, such reports should be generated only after the transaction reaches its commit point.

5. A common method of dealing with such actions is to issue the commands that generate the reports

but keep them as batch jobs, which are executed only after the transaction reaches its commit

point. If the transaction fails, the batch jobs are cancelled.

22.2 NO-UNDO/REDO Recovery Based on Deferred Update

During transaction execution, the updates are recorded only in the log and in the cache buffers.

After the transaction reaches its commit point and the log is force written to disk, the updates

are recorded in the database.

 If a transaction fails before reaching its commit point, there is no need to undo any operations

because the transaction has not affected the database on disk in any way.

Therefore, only REDO type log entries are needed in the log.

We can state a typical deferred update protocol as follows:

1. A transaction cannot change the database on disk until it reaches its commit point; hence

all buffers that have been changed by the transaction must be pinned until the transaction

commits

2. A transaction does not reach its commit point until all its REDO-type log entries are

recorded in the log and the log buffer is force-written to disk.

Because the database is never updated on disk until after the transaction commits, there is never

a need to UNDO any operations.

REDO is needed in case the system fails after a transaction commits but before all its changes are

recorded in the database on disk.

For multiuser systems with concurrency control, the concurrency control and recovery

processes are interrelated.

http://www.pdfwatermarkremover.com/buy.htm
http://www.pdfwatermarkremover.com/buy.htm

Recovery Algorithm RDU_M (Recovery using Deferred Update in a Multiuser

environment) :

Procedure RDU_M (NO-UNDO/REDO with checkpoints). Use two lists of transactions

maintained by the system: the committed transactions T since the last checkpoint (commit list), and the

active transactions T′ (active list). REDO all the WRITE operations of the committed transactions from the

log, in the order in which they were written into the log. The transactions that are active and did not commit

are effectively cancelled and must be resubmitted.

The REDO procedure is defined as follows:

procedure REDO (WRITE_OP). Redoing a write_item operation WRITE_OP consists of

examining its log entry [write_item, T, X, new_value] and setting the value of item X in the database to

new_value, which is the after image (AFIM).

The below figure illustrates a timeline for a possible schedule of executing transactions. When the

checkpoint was taken at time t1, transaction T1 had committed, whereas transactions T3 and T4 had not.

Before the system crash at time t2, T3 and T2 were committed but not T4 and T5. According to the

RDU_M method, there is no need to redo the write_item operations of transaction T1—or any transactions

committed before the last checkpoint time t1. The write_item operations of T2 and T3 must be redone,

however, because both transactions reached their commit points after the last checkpoint. Recall that the

log is force-written before committing a transaction. Transactions T4 and T5 are ignored: They are

effectively cancelled or rolled back because none of their write_item operations were recorded in the

database on disk under the deferred update protocol (no-steal policy).

Drawbacks

1. The drawbacks of this method here is that it limits the concurrent execution of transactions

because all write-locked items remain locked until the transaction reaches its commit point.

2. It require excessive buffer space to hold all updated items until the transactions commit.

Benefits:

The method’s main benefit is that transaction operations never need to be undone, for two reasons:

1. A transaction does not record any changes in the database on disk until after it reaches its commit

point. Hence, a transaction is never rolled back because of failure during transaction execution.

2. A transaction will never read the value of an item that is written by an uncommitted transaction,

because items remain locked until a transaction reaches its commit point. Hence, no cascading

rollback will occur.

