Software Architecture and Design Patterns (18CS731)
SOFTWARE ARCHITECTURE AND DESIGN PATTERNS
(Effective from the academic year 2018 -2019)
SEMESTER -VII
Course Code 18CS731 CIE Marks 40
Number of Contact Hours/Week 3:0:0 SEE Marks 60
Total Number of Contact Hours 40 Exam Hours 03
CREDITS -3

Course Learning Objectives: This course (18CS731) will enable students to:

e Learn How to add functionality to designs while minimizing complexity.

e  What code qualities are required to maintain to keep code flexible?

e To Understand the common design patterns.

e To explore the appropriate patterns for design problems
Module 1 Contact

Hours

Introduction: what is a design pattern? describing design patterns, the catalog of design | 08
pattern, organizing the catalog, how design patterns solve design problems, how to select a
design pattern. how to use a design pattern. A Notation for Describing Object-Oriented
Systems
Textbook 1: Chapter 1 and 2.7
Analysis a System: overview of the analysis phase, stage 1: gathering the requirements
functional requirements specification, defining conceptual classes and relationships, using the
knowledge of the domain. Design and Implementation, discussions and further reading.
Texthook 1: Chapter 6
RBT: L1, L2, L3
Module 2
Design Pattern Catalog: Structural patterns, Adapter, bridge. composite. decorator, facade. | 08
flyweight, proxy.
Textbook 2: chapter 4
RBT: L1. L2, L3
Module 3
BehavioralPatterns: Chain of Responsibility, Command, Interpreter. Iterator, Mediator, | 08
Memento. Observer, State, Template Method
Textbook 2: chapter 5
RBT: L1, 1.2, L3
Module 4
Interactive systems and the MVC architecture: Introduction, The MVC architectural | 08
pattern, analyzing a simple drawing program. designing the system, designing of the
subsystems, getting into implementation, implementing undo operation, drawing
incompleteitems, adding a new feature, pattern-based solutions.
Textbook 1: Chapter 11
RBT: L1. L2, L3
Module 5
Designing with Distributed Objects: Client server system, java remote method invocation, | 08
implementing an object-oriented system on the web (discussions and further reading) a note
on input and outpul, selection statements, loops arrays.
Textbook 1: Chapter 12
RBT: L1.1.2. L3
Course Outcomes: The student will be able to:

e Design and implement codes with higher performance and lower complexity

e Be aware of code qualities needed to keep code flexible
7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

e Experience core design principles and be able to assess the quality of a design with
respect to these principles.
e Capable of applying these principles in the design of object oriented systems.
e Demonstrate an understanding of a range of design patterns. Be capable of
comprehending a design presented using this vocabulary.
* Be able to select and apply suitable patterns in specific contexts
Question Paper Pattern:
e The question paper will have ten questions.
e FEach full Question consisting of 20 marks
There will be 2 full questions (with a maximum of four sub questions) from each module.
e Each full question will have sub questions covering all the topics under a module.
e The students will have to answer 5 full questions, selecting one full question from each module.
Textbhooks:
1. Brahma Dathan, Sarnath Rammath. Object-oriented analysis, design and
implementation, Universities Press, 2013
2. FErich Gamma, Richard Helan, Ralph Johman, John Vlissides . Design Patterns, Pearson
Publication,2013.

Reference Books:
1. Frank Bachmann. RegineMeunier, Hans Rohnert “Pattern Oriented Software
Architecture” —Volume 1. 1996.
2. William J Brown et al., "Anti-Patterns: Refactoring Software, Architectures and Projects
in Crisis", John Wiley, 1998.

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Module 1 - Introduction

Design pattern

“A proven solution to a common problem in a specified context” Example: We can light a candle
if light goes out at night Christopher Alexander (Civil Engineer) in 1977 wrote

“A pattern describes a problem which occurs over and over again in our environment, and
then describes the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice”

Essential Elements:

» The pattern name is a handle we can use to describe a design problem, its solutions,
and consequences in a word or two.

» The problem describes when to apply the pattern.

» The solution describes the elements that make up the design, their relationships,
responsibilities, and collaborations. The pattern provides an abstract description of a
design problem and how a general arrangement of classes and objects solves it.

» The consequences are the results and trade-offs of applying the

pattern.

Example Pattern:

Pattern Name — Iterator

Problem — How to serve Patients at a Doctor’s Clinic

Solution — Front-desk manages the order for patients to be called

e By Appointment

e By Order of Arrival

e By Extending Gratitude
e By Exception

Consequences

e Patient Satisfaction
e Clinic’s Efficiency
e Doctor’s Productivity

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Describing Design Patterns

Pattern Name & Classification — Conveys the essence of the pattern concisely
Intent — What design issue the pattern addresses

Also Known As — Other well-known names for this pattern

Motivation — A scenario illustrating a design problem and how it’s being solved by the
pattern

Applicability — Known situations where the pattern can be applied

Structure — OMT (Object Modelling Technique) based graphic representation of the classes
in the pattern

Participants — Classes and objects in the pattern with their responsibilities
Collaborations — How the participants collaborate to carry out their responsibilities
Consequences —

e How does the pattern support its objectives?
e What are the trade-offs and results of using the pattern?
e What aspect of system structure does it let you vary independently?

Implementation — Hints on implementation of the pattern like language dependency

e What pitfalls, hints, or techniques should you be aware of when implementing the
pattern?
e Are there language-specific issues?

Sample Code — Code fragments to implement the pattern in specific language (C++or C# or
java).

Known Uses — Examples of the pattern found in real systems.
Related Patterns — Other patterns closely related with the pattern under consideration

e What design patterns are closely related to this one?
e What are the important differences?
e With which other patterns should this one be used?

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

The Catalog of Design Pattern

Abstract Factory: Provide an interface for creating families of related or dependent objects
without specifying their concrete classes.

Adapter:

e Convert the inter face of a class into another interface client’s expect.
e Adapter lets classes work together

Bridge: Decouple an abstraction from its implementation so that two can vary independently.

Builder: Separates the construction of the complex object from its representation so that the
same construction process can create different representations.

Chain of Responsibility: Avoid coupling the sender of a request to it‘s receiver by giving
more than one object a chance to handle the request. Chain the receiving objects and pass the
request along the chain until objects handles it.

Command: Encapsulate a request as an object, thereby letting parameterize clients with
different request, queue or log requests, and support undoable operations.

Composite: Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects uniformly.

Decorator: Attach additional responsibilities to an object dynamically. Decorators provide a
flexible alternative to sub classing for extending functionality.

Facade: Provide a unified interface to a set of interfaces in a subsystem. Facade defines a
higher-level interface that makes the subsystem easier to use.

Factory Method: Defines an interface for creating an object ,but let subclasses decide which
class to instantiate. Factory Method lets a class defer instantiation to subclasses.

Flyweight: Use sharing to support large numbers of fine-grained objects efficiently.

Interpreter: For the given language, it defines the representation of its grammar to interpret
sentences in the language.

Iterator: Provide a way to access the element of an aggregate object sequentially without
exposing its underlying representation.

Mediator: Define an object that encapsulates how a set of objects interact. Mediator
promotes loose coupling of objects and allows to vary their interaction independently.

Memento: Without violating encapsulation, capture and externalize an object‘s internal state
so that object can be restored to this state later.

Observer: Define a one-to-many dependency between objects so that when one object
changes state, all it‘s dependents are notified and updated automatically.

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Prototype: Create new objects by copying existing objects.

Proxy: Provide a surrogate or placeholder (substitute) to control the access to the original
object.

Singleton: Ensure a class has only one instance, and provide a point of access to it.

State: Allow an object to alter its behavior when its internal state changes. The object will
appear to change its class

Strategy: Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients that use it.

Template Method: Define the Skelton of an operation, deferring some steps to subclasses.
Template method subclasses redefine certain steps of an algorithm without changing the
algorithms structure

Visitor: Represent an operation to be performed on the elements of an object structure.
Visitor lets you define a new operation without changing the classes of the elements on which
it operates.

Organizing the Catalog
We classify the design patterns by two criteria.
The first criterion, called purpose, reflects what a pattern does.
1. Creational patterns concern the process of object creation.
2. Structural patterns deal with the composition of classes or objects.

3. Behavioral patterns characterize the ways in which classes or objects interact and
distribute responsibility.

The second criterion, called scope,
e Specifies whether the pattern applies primarily to classes or to objects.
e Class patterns deal with relationships between classes and their subclasses.

e These relationships are established through inheritance, so they are static— fixed at
compile-time.

e Object patterns deal with object relationships, which can be changed at run-time and
are more dynamic.

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Purpose

Creational Structural Behavioral
Scope | Class | Factory Method (107) | Adapter (class) (139) | Interpreter (243)
Template Method (325)
Object | Abstract Factory (87) | Adapter (object) (139) | Chain of Responsibility (223)
Builder (97) Bridge (151) Command (233)

Prototype (117) Composite (163) Iterator (257)
Singleton (127) Decorator (175) Mediator (273)

Facade (185) Memento (283)

Flyweight (195) Observer (293)

Proxy (207) State (305)
Strategy (315)
Visitor (331)

Table 1.1: Design pattern space

How Design Patterns solve design problems

/
%

/
%

R/
L X4

X3

%

)
0‘0

R/
‘0

L)

) )
LS X4

X3

*

Finding Appropriate Objects

Determining Object Granularity

Specifying Object Interfaces

Specifying Object Implementations

Class versus Interface Inheritance

Programming to an Interface, not an Implementation
Putting Reuse Mechanisms to Work

Relating Run-Time and Compile-Time Structures
Designing for Change

1. Finding Appropriate Objects

An object packages both data and the procedures (code), where the Procedures are the
methods or operations to be performed.
Objects are encapsulated during the execution and therefore objects cannot be
accessed directly, and its representation is invisible from outside.
Decomposing a system into objects is the hard part because the parameters like
encapsulation, granularity, dependency, flexibility, performance, evolution,
reusability era to be considered in the object-oriented design.
Object-oriented design methodologies includes different approaches

v' We can write problem statement, single out nouns and verbs, and create

corresponding classes and operations

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

v" Focus the collaborations and responsibilities in the system
v" Strict modeling of the real world and translating the objects found during
analysis into design.
= Object-oriented design end up with low level classes like arrays
= The abstractions are necessary to make the design flexible
= Design pattern helps us to identify less-obvious abstractions.
v’ Strategy pattern describes how to implement interchangeable families of
algorithms.
v/ State pattern represents each state of an entity as an object

2. Determining Object Granularity
= Objects can vary tremendously in size and number
= Facade pattern describes how to represent subsystems as objects
= Flyweight pattern describes how to support huge numbers of objects
= Abstract Factory and Builder take the responsibilities of creating other objects
= Visitor and Command pattern implement a request on another object or group of
objects.

3. Specifying Object Interfaces

= Every operation declared by an object specifies: the operation's name, the objects it
takes as parameters, and the operation's return value. This is known as the
operation’s signature.

= The set of all signatures defined by an object's operations is called the interface to
the object.

= Any request that matches a signature in the object's interface may be sent to the
object.

= A type is a name used to denote a particular interface.

= Subtype inheriting the interface of its Supertype.

= Objects are known only through their interfaces.

»= The run-time association of a request to an object and one of its operations is
known as dynamic binding.

= Design patterns help programmers to define interfaces by identifying their key
elements and the kind of data that get sent across an interface. A design pattern can
also tell what not to put in the interface

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Interface:

e Set of all signatures defined by an object’s operations
e Any request matching a signature in the objects interface can be sent to the object
e Interfaces may contain other interfaces as subsets

e Denotes a particular interfaces

e An object may have many types

e Widely different object may share a type

e Objects of the same type need only share parts of their interfaces
e A subtype contains the interface of its super type

Dynamic Binding, Polymorphism
Binding

e Operation to be performed depends on the request and the object

e Run-time association of a request to an object and this operation is known as dynamic
binding

e Requests does not allow to a particular implementation until run-time

Polymorphism

e Simplifies the definitions of Clients
e Decouples the objects from each other
e Objects vary their relationships to each other at run-time

An object’s implementation is defined by its class

The class specifies the object‘s internal data and defines the operations the object can
perform

Objects is created by instantiating a class
e An object = An instance of a class
Class inheritance
e Parent class and subclass
Memento Pattern define two interfaces

e Restricted one that lets clients hold and copy
e Privileged one that only the original object can reuse to store and retrieve state

Decorator and Proxy patterns are used for interfaces of objects

Visitor is used to reflect all classes of objects that visitors can visit

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

4. Specifying Object Implementations
= An object's implementation is defined by its class.
= The class specifies the object's internal data and representation and defines the
operations that the object can perform.
= A dashed arrowhead line indicates a class that instantiates objects of another class.
The arrow points to the class of the instantiated objects.

ClaassMarme

Opaeraticon 1 ()
Type Opaeratiomn2()

I -

instancewWariablae 1
Type instancewWarable2

Instantigtor f-==-----~-- » Instantiates

ParentClass

Operation()

Subclass

Inheritance

® New classes can be defined in terms of existing classes using class inheritance. When
a subclass inherits from a parent class, it includes the definitions of all the data and
operations that the parent class defines. Objects that are instances of the subclass will
contain all data defined by the subclass and its parent classes.

® We indicate the subclass relationship with a vertical line and a triangle.

Abstract Class

= Abstract Class is one whose main purpose is to define a common interface for its
subclasses. The operations that an abstract class declares but doesn't implement are
called abstract operations.

= The names of abstract classes appear in slanted type. Slanted type is also used to
denote abstract operations.

= The implementation of the operation is represented by dog-eared box, the code will
appear connected with a dashed line to the operation it implements

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Concrete classes
= Classes that are not abstract are called concrete classes

= A concrete classes implement creation methods of the abstract factory

Override an operation

= Subclasses override an operation defined by its parent classes
= Subclasses redefines the behaviors of their parent classes

Mixin Class

A Mixin class is a class that's intended to provide an optional interface or functionality to
other classes. Mixin classes require multiple inheritances

Augmented class:

Allows user to create own projects without having any previous knowledge

A= frarae o Fass

e e AR

ES

ConcreteSaobhclass

R . ]
Bl e e natiho

e ] - —— — — — [=E=P= R T Pt T =]

e r=tiornd )

ExistingClass

EwistingCoarationd )

N

T rry

AAidr e arafiioray @

N

AurcgpmentecdClass

Existing rperstior()
i e raticerd b

5. Class versus Interface Inheritance

= The class defines the object's internal state and the implementation of its operations.

= In contrast, an object's type only refers to its interface—the set of requests to which
it can respond.

= An object can have many types, and objects of different classes can have the same
type.

= An object is an instance of a class; we imply that the object supports the interface
defined by the class.

= Class inheritance defines an object's implementation in terms of another object's
implementation.

= Interface inheritance describes when an object can be used in place of another.

Examples: Chain of Responsibility, Composite pattern, Command, Observer, State, and
Strategy.

Page : 23

7th Semester, Department of ISE



Software Architecture and Design Patterns (18CS731)

6. Programming to an Interface, not an Implementation
= Class inheritance is a mechanism for extending an application's functionality by
reusing functionality in parent classes.
= When inheritance is used all classes derived from an abstract class will share its
interface.
= All subclasses can then respond to the requests in the interface of this abstract class

Benefits

¢ Clients remain unaware of the specific types of objects they use
e Clients remain unaware of the classes that implement these objects, clients only
know about the abstract classes defining the interface.

This leads to the first principle of reusable object-oriented design:
Instantiation of Concrete classes

= Abstract Factory, Builder, Factor method, Prototype and Singleton are the
creational patterns

= Creational patterns ensures that the system is written in terms of interfaces, not
implementations

7. Putting Reuse Mechanisms to work
The challenge lies in applying the concepts like objects, interfaces, classes and inheritance
to build the design patterns to be flexible and reusable

» Inheritance versus Composition

» Delegation

» Inheritance versus Parameterized Types
Inheritance verses composition

= Two techniques for reusing the functionality in object-oriented systems are class
inheritance and object composition

e class inheritance
v" White-box reuse
e object composition
v Black-box reuse
White-box reuse:
v Reuse by sub classing (class inheritance)
v"Internals of parent classes are often visible to subclasses

v works statically, compile-time approach

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

v"Inheritance breaks encapsulation
Black-box reuse:
v Reuse by object composition
v Requires objects to have well-defined interfaces

v No internal details of objects are visible

= Class inheritance define the implementation of one class in terms of the other

= Class inheritance: Reuse by sub classing is often referred to as “white-box reuse”.

=  The term "white-box" refers to visibility: With inheritance, the internals of parent classes
are often visible to subclasses.

=  Defined at compile-time. and straightforward to use

=  “Inheritance breaks encapsulation” (superclass implementation exposed to subclasses)

Advantages

v’ Static, straightforward to use

v" Make the implementations being reuse more easily
Disadvantages

v The implementations inherited can’t be changed at run time, because inheritance is
defined at compile time

v' Parent classes often define at least part of their subclasses physical representation
e Breaks encapsulation

v Implementation dependencies can cause problems(limits flexibility and reusability)
when we try to reuse a subclass

Object composition:

New functionality is obtained by assembling or composing objects to get more complex
functionality. This style of reuse is called “black-box reuse”, because no internal details of
objects are visible.

= Defined at run-time by objects acquiring references to other objects.
= Must program to interfaces, so interfaces must be well thought-out and stable.

= Emphasis on interface stability encourages granular objects with single
responsibilities

Delegation

In delegation, two objects are involved in handling a request: receiving object delegates
operations to its delegate

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Window Rectangle
rectangle S U Do PSS
Arona() P Aroa() P
a — - — -
. wicstn
height
' T
H H
. .
r roturm rectanglo -~ =Aroad) l roturn wicith = hoaight l

= Advantages: Makes it easy to compose behaviors at run-time and to change the way
they are composed.

= Disadvantages: Dynamic, highly parameterized software is harder to understand than
more static software and there are also run-time inefficiencies

= Delegation is a good design choice only when it simplifies more than it complicates

= Delegation is an extreme example of object composition

Example: Several design patterns use delegation, such as:

a State: Here an object delegates requests to a State object that represents its current
state

b. Strategy: Here an object delegates a specific request to an object that represents a
strategy for carrying out the request.

Inheritance versus Parameterized Types
= Another technique for reusing functionality is through parameterized types, also
known as generics in ADA and templates in C++
= Allows to define a type without specifying all the other types it uses, the unspecified
types are supplied as parameters at the point of use
= For example:
e Todeclare a list of integers, we supply the type "integer" as a parameter
e Todeclare a list of String objects, we supply the "String" type as a parameter.
= Parameterized types, generics, or templates
= Parameterized types gives us a third way to compose behavior in object-oriented
systems
= Many designs can be implemented using any of these three techniques.

v An operation implemented by subclasses (an application of Template Method)

v’ The responsibility of an object that is passed to the sorting routine (Strategy)

v" An argument of a C++ template or Ada generic that specifies the name of the
function is called to compare the elements.

= There are important differences between these techniques.

e Object composition lets us to change the behavior being composed at run-time,
but it requires indirection and can be less efficient

e Inheritance lets us to provide default implementations for operations and lets
subclasses override them

e Parameterized types let us to change the types that a class can use

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

8. Relating Run-Time and Compile-Time Structures

X/
°e

An object-oriented program’s run-time structure often bears little resemblance to its
code structure

The code structure is frozen at compile-time

A program’s run-time structure consists of rapidly changing networks of
communicating objects

Aggregation versus Acquaintance (Association)
Aggregation
v Aggregation implies that one object owns or responsible for another object
v' Aggregation implies that an aggregate object and its owner have identical
lifetimes
v Generally we speak of an object having or being part of another object.
v Aggregation relationships tend to be permanent than acquaintance.
Acquaintance
v Acquaintance implies that an object merely knows of another object
v Acquainted objects request operations of each other, but they are not
responsible for each other.
v Acquaintance is a weaker relationship than aggregation and suggests much
looser coupling between the objects
v Acquaintances are made and remade more frequently,
v Sometimes Acquaintance is called "Association" or the "using" relationship.

The distinction between acquaintance and aggregation is determined more by intent

than by explicit language mechanisms
The system‘s run-time structure must be imposed more by the designer than the

language
aggregatelnstance
Aggregator —»  Aggregatee

Designing for Change

The key to maximizing reuse lies in anticipating new requirements and changes to
existing requirements, and in designing your systems so that they can evolve
accordingly.

A design that doesn‘t take change into account risks major redesign in the future

These changes involve class redefinition and reimplementation, client modification and
retesting

Redesign affects many parts of the software system and unanticipated changes are
invariably expensive

Design patterns help us to avoid this by ensuring that a system can change in specific
ways

Each design pattern lets some aspect of system structure vary independently of other
aspects

Here are some common causes of redesign along with the design pattern( s) that

b

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Common Causes of Redesign

» Creating an object by specifying a class explicitly
Dependence on specific operations
Dependence on hardware and software platform
Dependence on object representations or implementations
Algorithmic dependencies
Tight coupling

Extending functionality by sub classing

vV VvV V YV ¥V VY V

Inability to alter classes conveniently

Creating an object by specifying a class explicitly: Specifying a class name when you create
an object commits you to a particular implementation instead of a particular interface.

Dependence on specific operations: When you specify a particular operation, you commit to
one way of satisfying a request. By avoiding hard-coded requests, you make it easier to
change the way a request gets satisfied both at compile-time and at run-time.

Dependence on hardware and software platform: External operating system interfaces and
application programming interfaces (APIs) are different on different hardware and software
platforms. Software that depends on a particular platform will be harder to port to other
platforms. It may even be difficult to keep it up to date on its native platform. It's important
therefore to design your system to limit its platform dependencies.

Dependence on object representations or implementations: Clients that know how an
object is represented, stored, located, or implemented might need to be changed when the
object changes. Hiding this information from clients keeps changes from cascading.

Algorithmic dependencies: Algorithms are often extended, optimized, and replaced during
development and reuse. Objects that depend on an algorithm will have to change when the
algorithm changes. Therefore algorithms that are likely to change should be isolated.

Tight coupling: Classes that are tightly coupled are hard to reuse in isolation, since they
depend on each other. Tight coupling leads to monolithic systems, where you can't change or
remove a class without understanding and changing many other classes.

Extending functionality by subclassing: Customizing an object by sub classing often isn't
easy. Every new class has a fixed implementation overhead (initialization, finalization, etc.).
Defining a subclass also requires an in-depth understanding of the parent class. For example,
overriding one operation might require overriding another.

Inability to alter classes conveniently: Sometimes you have to modify a class that can't be
modified conveniently. Perhaps you need the source code and don't have it (as may be the
case with a commercial class library).

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Design patterns in Application programs

= |f you're building an application program such as a document editor or spreadsheet,
then internal reuse, maintainability, and extension are high priorities.

= Internal reuse ensures that you don't design and implement any more than you have
to.

» Design patterns that reduce dependencies can increase internal reuse.

+ Design patterns also make an application more maintainable when they are used to
limit platform dependencies and to layer a system

*  Looser coupling boosts the likelihood that one class of object can cooperate with
several others

Reduced coupling also enhances extensibility

For example, when you eliminated dependencies on specific operations by isolating and
encapsulating each operation, you make it easier to reuse an operation in different contexts.

Design patterns in Toolkits

A toolkit is a set of related and reusable classes designed to provide useful, general-
purpose functionality.

An example of a toolkit is a set of collection classes for lists, associative tables, stacks,
and the like.

The C++ 1/O stream library is another example.

Toolkits emphasize code reuse

Toolkits are the object-oriented equivalent of subroutine libraries
Toolkit design is arguably harder than application design

Toolkits don't impose a particular design on your application; they just provide
functionality that can help your application do its job.

Toolkit design is arguably harder than application design, because toolkits have to work
in many applications to be useful.

Moreover, the toolkit writer isn't in a position to know what those applications will be or
their special needs.

Design patterns in Frameworks

A framework is a set of cooperating classes that makeup a reusable design for a specific
class of software.

For example, a framework can be geared toward building graphical editors for different
domains like artistic drawing, music composition, and mechanical.

Another framework can help you build compilers for different programming languages

7th Semester, Department of ISE Page : 23




Software Architecture and Design Patterns (18CS731)

and target machines.

= We can customize a framework to a particular application by creating application-specific
subclasses of abstract classes from the framework

= The framework dictates the architecture of the application. It will define the overall
structure; it’s partitioning into classes and objects, the key responsibilities thereof, how
the classes and objects collaborate, and the thread of control.

= The framework captures the design decisions that are common to its application domain.

= Frameworks thus emphasize design reuse over code reuse, though a framework will
usually include concrete subclasses you can put to work immediately.

= Frameworks emphasize design reuse over code reuse

=  When we use a toolkit, we can write the main body of the application and call the code
which we want to reuse. When we use a framework, we reuse the main body and write
the code it calls.

= Advantages: Builds an application faster, easier to maintain, and more consistent to their
users

= Mature frameworks usually incorporate several design patterns

= The patterns help make the framework's architecture suitable to many different
applications without redesign

= An added benefit comes when the framework is documented with the design patterns it
uses.

= People who know the patterns gain insight into the framework faster.

= Even people who don't know the patterns can benefit from the structure they lend to the
framework's documentation.

= Enhancing documentation is important for all types of software, but it's particularly
important for frameworks.

= Frameworks often pose a steep learning curve that must be overcome before they're
useful.

Differences between framework and design pattern
Patterns and frameworks differ in three ways
1. Design patterns are more abstract than frameworks

v Frameworks can be embodied in code, but only examples of patterns can be embodied
in code.

v A strength of frameworks is that they ca n be written down in programming languages

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

and not only studied but executed and reused directly.
v Design patterns also explain the intent, trade-offs, and consequences of a design.
2. Design patterns are smaller architectural elements than frameworks

A typical framework contains several design patterns, but the reverse is never true.

3. Design patterns are less specialized than frameworks
v Frameworks always have a particular application domain.

v"In contrast, the design patterns in this catalo g can be used in nearly any kind of
application.

How to Select a Design Pattern
» Consider how design patterns solve design Problems
Scan Intent sections
Study how patterns interrelate
Study patterns of like purpose

Examine a Cause of redesign

YV V V VYV V

Consider what should be variable in the design

Consider how design patterns solve design problems.

Determine object granularity; specify object interfaces, and several other ways in which
design patterns solve design problems.

Scan Intent sections

Read through each pattern's intent (purpose) to find one or more that should relevant to your
problem.

Study how patterns interrelate
Studying these relationships can help direct you to the right pattern or group of patterns.
Study patterns of like purpose

Study only those patterns which are of specific purposes ( creational patterns, structural
patterns, and behavioural patterns).

Examine a cause of redesign.

Look at the patterns that help you avoid the causes of redesign

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Consider what should be variable in your design.

Consider what you want to be able to change without redesign.

How to Use a Design Pattern
> Read the pattern once through for an overview.
Go back and study the Structure, Participants and Collaborations sections.
Look at the Sample Code section to see a concrete
Example of the pattern in code.
Choose names for pattern participants that are meaningful in the application context.
Define the classes.

Define Application-specific names for operations in the Pattern

YV V VY VvV YV V VY

Implement the operations to carry out responsibilities and collaborations in the
pattern.

1. Read overview of pattern
Pay attention to the Applicability and Consequences sections to ensure the pattern
is right for your problem.

2. Go back and study the Structure, Participants, and Collaborations sections
Make sure you understand the classes and objects in the pattern and how they relate
to one another.

3. Look at the Sample Code section to see a concrete example of the pattern in code
Helps you learn how to implement the pattern.

4. Choose names for pattern participants that are meaningful in the application context
It is useful to incorporate the participant name into the name that appears in the
application.

5. Define the classes
Declare their interfaces, establish their inheritance relationships, and define the
instance variables that represent data and object references.

6. Define application-specific names for operations in the pattern

Use the responsibilities and collaborations associated with each operation as a

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

guide. Also, be consistent in your naming conventions

7. Implement the operations to carry out the responsibilities and collaborations in the
pattern

The implementation section offers hints to guide you in the implementation.

Purpose Design Pattern Aspect(s) That Can Vary
Creational | Abstract Factory (87) families of product objects
Builder (97) how a composite object gets created
Factory Method (107) subclass of object that is instantiated
Prototype (117) class of object that is instantiated
Singleton (127) the sole instance of a class
Structural | Adapter (139) interface to an object
Bridge (151) implementation of an object
Composite (163) structure and composition of an object
Decorator (175) responsibilities of an object
without subclassing
Facade (185) interface to a subsystem
Flyweight (195) storage costs of objects
Proxy (207) how an object is accessed; its location
Behavioral | Chain of Responsibility (223) | object that can fulfill a request
Command (233) when and how a request is fulfilled
Interpreter (243) grammar and interpretation of a language
Iterator (257) how an aggregate’s elements are accessed,
traversed
Mediator (273) how and which objects interact with
each other
Memento (283) what private information is stored outside
an object, and when
Observer (293) number of objects that depend on another
object; how the dependent objects stay
up to date
State (305) states of an object
Strategy (315) an algorithm
Template Method (325) steps of an algorithm
Visitor (331) operations that can be applied to object(s)
without changing their class(es)

Table 1.2: Design aspects that design patterns let you vary

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

What is Object-Oriented Development?

First computers

» First computers are developed mainly to automate a well-defined process (i.e., an
algorithm) for numerical computation, as systems became more complex, its
effectiveness in developing solutions became suspect.

« software applications developed in later years had two differentiating characteristics:
v’ Behavior that was hard to characterize as a process

v Requirements of reliability, performance, and cost that the original developers
did not face

* The ‘process-centred’ approach to software development used what is called top
down functional decomposition.

v’ The first step in such a design was to recognize what the process had to deliver
which was followed by decomposition of the process into functional modules.

v’ Structures to store data were defined and the computation was carried out by
invoking the modules, which performed some computation on the stored data
elements.

v The life of a process-centred design was short because changes to the process
specification required a change in the entire program.

v This resulted in an inability to reuse existing code without considerable
overhead

» Thus engineering disciplines started soon after, and the disciplines of ‘software
design’ and ‘software engineering’ came into existence.

» The reasons for this success are easy to see:
v’ Easily understandable designs
Similar (standard) solutions for a host of problems
An easily accessible and well-defined ‘library’ of ‘building-blocks’
Interchangeability of components across systems,

A software component is also capable of storing data,

D N N N NN

The components can also communicate with each other as needed to complete
the process

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Key Concepts of Object-Oriented Design

1.

2.

7.

The Central Role of Objects

The notion of a Class

Abstract specification of functionality
A language to define the System
Standard Solutions

An analysis process to model a system

The notions of extendibility and adaptability

Other Related Concepts

Modular Design and Encapsulation

Modular Design

Modularity refers to the idea of putting together a large system by developing a
number of distinct components, independently and then integrating these to provide
the required functionality.

This approach is easier to understand than one that is designed as a monolithic
structure. Such a design must be modular.

The system's functionality must be provided by well-designed, Cooperating modules.
Each module must perform functionality that is clearly specified by an interface.

The interface also defines how other components may interact or communicate with
the module.

We would like that a module clearly specify what it does, but not expose its
implementation. This separation of concerns gives rise to the notion of encapsulation,

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

Encapsulation

= Encapsulation, which means that the module hides details of its implementation from
external agents. Example of applying encapsulation.

= The abstract data type (ADT), is generalization of primitive data types such as
integers and characters.

= The programmer specifies the collection of operations on the data type and the data
structures that are needed for data storage.

= Users of the ADT perform the operations without concerning themselves with the
implementation.

Cohesion and Coupling
Cohesion

= Cohesion of a module tells us how well the entities within a module work together to
provide functionality. Cohesion is a measure of how focused the responsibilities of a
module are.

= |f the responsibilities of a module are unrelated or varied and use different sets of
data, cohesion is reduced.

= Highly cohesive modules tend to be more reliable, reusable, and understandable than
less cohesive ones.

= |n contrast, the worst approach would be to arbitrarily assign entities to modules,
resulting in a module whose constituents have no obvious relationship.

Coupling
= Coupling refers to how modules are dependent on each other.

= The very fact that we split a program into multiple modules introduces some coupling
into the system.

= Coupling could result because of several factors: a module may refer to variables
defined in another module or a module may call methods of another module and use
the return values.

= The amount of coupling between modules can vary.

= In general, if modules do not depend on each others implementation we say that the
coupling is low

= Low coupling allows us to modify a module without worrying changes on the rest of
the system.

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CS731)

= By contrast, high coupling means that changes in one module would necessitate
changes in other modules, which may make it harder to understand the code.

Modifiability and Testability
Modifiability
= The modification in software can be done to change both functionality and design.

= The ability to change the functionality of a component allows for systems to be more
adaptable;

= Improving the design through incremental change is accomplished by refactoring.

= In both cases, the organization of the system in terms of objects and classes has
helped develop systematic procedures that mitigate the risk.

Testability
= Testability refers to both falsifiability, and ease with which we can find bugs in

= Software and the extent to which the structure of the system facilitates the detection of
bugs.

Benefits and Drawbacks of the Paradigm
Advantages

1. Objects often reflect entities in application systems. This makes it easier for a
designer to come up with classes in the design. In a process-oriented design, it is
much harder to find such a connection that can simplify the initial design.

2. Object-orientation helps increase productivity through reuse of existing software.
Inheritance makes it relatively easy to extend and modify functionality provided by a
class. Language designers often supply extensive libraries that users can extend.

3. It is easier to accommodate changes. One of the difficulties with application
development is changing requirements. With some care taken during design, it is
possible to isolate the varying parts of a system into classes.

4. The ability to isolate changes, encapsulate data, and employ modularity reduces the
risks involved in system development.

7th Semester, Department of ISE Page : 23



Software Architecture and Design Patterns (18CSs731)

Drawbacks
1. Object creation and destruction is expensive.

2. Interactions of many objects are complex Example: Banking application, Video gamethat has
often a large number of objects.

3. Objects tend to have complex associations, which can result in non-locality, leading topoor
memory access times.

4. Programmers and designers schooled in other paradigms, usually in the imperativeparadigm,
find it difficult to learn and use object-oriented principles.

5. Programmers may need a year to start feeling comfortable with these concepts.

6. Some researchers are of the opinion that the programming environments also havenot kept up
with research in language capabilities.

7. Editors and testing and debugging facilities do not directly support many of theadvances
such as design patterns.

Analyzing a System
2.10verview of the Analysis Phase

The major goal of this phase is to address this basic question: what should the system do?
Requirements are often simple and any clarifications can be had via questions in the classroom,
e- mail messages, etc.
However, as in the case of the classroom assignment, there are still two parties: the user community,
which needs some system to be built and the development people, who are assigned to do the work.
The process could be split into three activities:

1. Gather the requirements: this involves interviews of the user community, reading of any available
documentation, etc.

2. Precisely document the functionality required of the system.

3. Develop a conceptual model of the system, listing the conceptual classes and their relationships.

It is not always the case that these activities occur in the order listed.

2.2 Stage 1: Gathering the Requirements
The purpose of requirements analysis is to define what the new system should do. Since the system
will be built based on the information garnered in this step, any errors made in this stage will result
in the implementation of a wrong system. Once the system is implemented, it is expensive to modify

it to overcome the mistakes introduced in the analysis stage.

Imagine the scenario when you are asked to construct software for an application. The client may
not always be clear in his/her mind as to what should be constructed.

7th Semester, Department of ISE Page: 4



Software Architecture and Design Patterns (18CSs731)

First reason for this is that it is difficult to imagine the workings of a system that is not yet built.
Second reason Incompleteness and errors in specifications can also occur because the client doesnot
have the technical skills to fully realize what technology can and cannot deliver

Third reason for omissions is that it is all too common to have a client who knows the system very
well and consequently either assumes a lot of knowledge on the part of the analyst or simplyskips
over the ‘obvious details’.

Requirements can be classified into two categories:

« Functional requirements: These describe the interaction between the system and its users, and
between the system and any other systems, which may interact with the system by supplying or
receiving data.

Non-functional requirements: Any requirement that does not fall in the above category is a non-
functional requirement. Such requirements include response time, usability and accuracy.
Sometimes, there may be considerations that place restrictions on system development; these may
include the use of specific hardware and software and budget and time constraints.

7th Semester, Department of ISE Page: 4



Software Architecture and Design Patterns (18CSs731)
L___________________________________________________________________________________________________________________________________]
2.2.1 Case Study Introduction

Let us proceed under the assumption that developers of our library system have available to them a
document that describes how the business is conducted. This functionality is described as a list of
what are commonly called business processes.

The business processes of the library system are listed below.
1 Addamember

Add books

Issue books

Return books\

Remove books

Place a hold on a book

Remove a hold on a book

Process Holds: Find the first member who has a hold on a book
9 Renew books

10 Print out a member’s transactions

11 Store data on disk

12 Retrieve data from disk

13 Exit

O~NO O WN

In addition, the system must support three other requirements that are not directly related to the
workings of a library, but, nonetheless, are essential.

- A command to save the data on a long-term basis.

- A command to load data from a long-term storage device.

- A command to quit the application. At this time, the system must ask the user if data is to be saved
before termination.

> Areal library would have to perform additional operations like generating reports of various
kinds, impose fines for late returns, etc.

» Many libraries also allow users to check out books themselves without approaching a clerk.

» Whatever the case may be, the analysts need to learn the existing system and the
requirements. As mentioned earlier, they achieve this through interviews, surveys, and study.

2.3 Functional Requirements Specification

The requirements specification document serves as a contract between the users and the developers.
we attempt to create a precise documentation of the requirements, we will discover errors and omissions.
An accepted way of accomplishing this task is the use case analysis which we study now.

Use Case Analysis: It is a powerful technique that describes the kind of functionality that a user expects
from the system.
o ltisessentially a narrative describing the sequence of events (actions) of an external agent (actor)
using the system to complete a process.
e Itis a powerful technique that describes the kind of functionality that a user expects from the
system.
e Use cases have two or more parties: agents who interact with the system and the system itself.

7th Semester, Department of ISE Page: 4



via the library staff.

To initiate this process, we need to get a feel for how the system will interact with the end-user.We

assume that some kind of a user-interface is required, so that when the system is started, it provides a
menu with the following choices:

© 00 N O OB~ WwDN P

ol
N PO

. Add a member
. Add books

. Issue books

. Return books

. Remove books

. Place a hold on a book

. Remove a hold on a book

. Process Holds: Find the first member who has a hold on a book
. Renew books

. Print out a member’s transactions

. Store data on disk

. Retrieve data from disk

13.

Exit

Use case diagram for the library system

7th Semester, Department of ISE Page: 4



Software Architecture and Design Patterns 18CS731

Use case for registering a user

Steps:

1

2
3
4
5

6

Member will give the details of name, address, phone number to the clerk

Clerk process the request through the system

System asks the details of the customer to be registered.

Clerk enters the necessary information of the member into the system.

System check the details of the member and if the member is a valid person, then generates member
identification number and display the necessary information at the output

Clerk provides the identification number to the user.

Use case for adding books

Steps:

O b wWwNPEF

Actions performed by the actor Responses from the system

1. Library receives a shipment of
books from the publisher

2. The clerk issues a request toadda
new book

3. The system asks for the identifier, title,
and author nameof the book

4. The clerk generates the unique
identifier, enters the identifier, title,
and author name of a book

5. The system attempts to enter the
information in the catalog and echoes to
the clerk the title, author name, and id of
the book.It then asks if the clerk wants to

enter information about another
book

6. The clerk answers in the
affirmative or in the negative

7. If the answer is in the affirmative, the
system goes toStep 3. Otherwise, it exits

Library receives the information about the books shipped from the publisher.

Clerk receives a request to process the addition of books to the catalog.

System asks the details of the identifier, title, and author name of the book to be added.

Clerk generates the necessary information of the book to be added into the system.

System adds the details of the book and displays the necessary information of the book at the output
and asks for any more books to be added.

If clerk replies affirmative, then same procedure is followed for the next set of books to be added.
Otherwise system quits the application.

7™ Semester, Dept of CSE Page : 5



18CS731

Software Architecture and Design Patterns

Use case for issuing books

Table 6.3 LUse case Sook Checwouwt

Actons performed by the actor

Responses from the system

1. The member armives at the check-out counter
with a set of books and supplies the clerk with
his/her identification number

2. The clerk issues a reguest to check out books

3. The system asks for the user 1D

s

The clerk inputs the user 1D to the system

5. The svstem asks for the DD of the book

&,
user wants to check out

The clerk inputs the ID of a book thar the

7. The system records the book as having been
issued to the member: it also records the
member as having possession of the book. It
coenorates a dse-date. The system displays the
book title and due-date and asks if there are any
more books

=
and replies in the affirTnative or negative

The clerk stamps the duc-date on the book

9. If there are more books, the system moves to
Step 5. otherwise it exits

10. The customer coliects the books and leaves
the counter

Steps: 1

~NOoO O WN

9

Member gives the set of books with the member identification number to the clerk at the
checkout counter and requests clerk to check out the books.

Clerk receives a request to check out the books and start checking in the system.

System asks the details of the user ID.

Clerk enters the user ID

System asks the details of the book ID.

Clerk enters the ID of the book to be checked out.

i) System checks whether the member possesses the book and generates a due date.

i) System displays the book title, due date and asks if there is any more books to be processed
Clerk stamps due date on the book say yes, if there are books to be checked out. Otherwise no
when there are no books to be processed.

If yes, system continues to process from step 5 and asks only for book ID since customer ID is
same, otherwise system exits.

10 Customer collects the books and leave the checkout counter

7" Semester, Dept of CSE

Page : 7



Software Architecture and Design Patterns 18CS731

Steps:

~NOoO Ok WN

9

10

Fabolbe & a Chwer cronver ROl CEVvmOlanial revdvaced
I Actians porfornmed Hy (he aoatar FRomgrannoan from (ho sysntorn
TR The member arrives ot

Exsantor with n ket of bookx and supplios

e Cler k. with hias/Zher addentifioationn nuen

e

2. Clark Issues & reqguaxt 1o chack out

S NN

AL e mysteny asklos Cor Chee aser o
W Tk npaars the usor 15D 6y thio sy stanm
SO ahe 1D s validd, the systam asks For the
I ot 0 vl st sssises 0 parints o sy
Provpriate mmesnnage and exits the s oose
e The clock dopruts the dddentiney of o ook
fhat the uscer waants to check out
7 I thwe 10D am wvalicd and the ook in an
abh e oy the anmemibar, thhe sy stem recorads

" - o 30
Plavs 6 suitabDlo arror message. The sy
terry mxbon D thoere sre rmore oo ko

2, The vlerk stamps the duo-darts, prines

st the transaction (i neoded) and roprlios

proanitively o nepgatively
D, I there are more books for choecking
Al Thes sy stain gaossn Back 1o Ntagp 5 oth
CrwiNe It e itn.

LS N Thhe clerk sUtaviengers thes alunes alaanes vt

pives the user thhe ooy choeoked out e

AOAsstarer loavas thao contoes

Member gives the set of books with the member identification number to the clerk at the checkout

counter and requests clerk to check out the books.

Clerk receives a request to check out the books and start checking in the system.

System asks the details of the user ID.

Clerk enters the user 1D

System asks the details of the book ID.

Clerk enters the ID of the book to be checked out.

i) System checks whether the member is a valid person or not and then records the member has a
possession on the book and generates a due date based on the result of Rule 1.

ii) System displays the book title and due date.

iii) The system displays error message, if the Rule 2 is not satisfied and asks if there is any more
books to be processed.

i) Clerk stamps due date on the book and take the print out of the transactions, if the user is
requesting for print out.

i) Clerk says yes, if there are books to be checked out. Otherwise no when there are no books to be
processed.

If yes, system continues to process from step 5 and asks only for book ID since customer ID is same,

otherwise system exits.

Customer collects the books and leave the checkout counter

7™ Semester, Dept of CSE Page : 7



Software Architecture and Design Patterns (17CS731)

Use case Return Book

Table 6.5 Cixer caaxe Raturn Book
Actions performed by the actor Responses Mrom the system
1 The momber arrives at the return

counter with a set of books and leaves
thoem on the clerk™s dosk.

2. The clerk issucs o reqguest 1o return
books.

3. The system asks for the identifier ol the
book.

A. The clerk entors the book idontifier
5. If the dentificer is valid, the systoem |
marks that the book has been returned and
informs the clerk i there is a hold placed
on the book: otherwise it notifies the clerk
that the identifior is not validd, It then askhs
it the clerk wants to process the return of
another book.,

6. The clerk answers in the afficmative or
in the negative and scts the book aside in
case thore ix a hold on the book. (Sce Rule
- 5 |

7. If the answer is in the affirmative, the
HYsHIem poes 1o Step 3, Otherwise, it exits i

i
E
3

Steps:

Member gives the set of books to be returned to the clerk at the checkout counter.

On receiving the request, clerk process the return books request in the system.

System asks the details of the book ID.

Clerk enters the ID of the book to be returned.

i) System checks whether the book is valid or not and then records that book is returned.

i) System informs the clerk about the deadline of the book to be returned and asks clerk that if any
more books are to be returned.

6. 1) Clerk says yes, if there are books to be returned, Otherwise no when there are no books to

be returned.

ii) Clerk checks the deadline of the book to be returned based on Rule 5.

7. If yes, system continues to process from step 3, otherwise system exits.

g~ wdNE

Table . & Cinew cave Mamoving Bookes

AS,‘"{"!‘ porformed Dy the actor IResponses from (he systomn
1. Librarvian identiftos the books o be =
cdeletod

2. The clerk issues o reguest to delete

Bookx

3. The system asks tor the ldentificr of the
ook,

4. The clerk enters the 1D for the ook,
SThe system checks il the book can be
removed uxing Kude 7 I the book can be
romoved, the system marks the book ax no
longer in the library 's catalog. The system
informs the clork about the success of the
deletion operation. It then asks it the clerk
wants to delete another ook,

G The clerk answers in the affirmative or
in the nepgative

7. Ir the answer is in the affirmative, the
HYHEEIN pOoos 1O Stop 3. Othoerwise, it exits.

Use case Removing Books
Steps:

1 Librarian gives the list of books to be deleted for the clerk.
2 On receiving the list, the clerk starts processing the deletion of books.
3 The system asks ID of the book.
4 The clerk enters the ID of the book.
5 1) The system checks whether the book can be removed as per Rule 3 by verifying the check out and
deadline of the book.
i) If the book ID is valid, the system removes the book ID from the library’s catalog.

7™ Semester, Dept of CSE Page : 13



Software Architecture and Design Patterns (17CS731)
Iii) The system displays the success of the deletion operation to the clerk.

7™ Semester, Dept of CSE Page : 13



Software Architecture and Design Patterns (17CS731)
Iv) System asks the clerk that, there are any more books are to be deleted.
6 The clerk answers yes, if there are books to be processed or no, when there are no books to be

processed.
7 If the answer is yes, then the system goes to Step 3 Otherwise, it exits

Use case Member Transactions

Table 6.7  Use case Member Transactions

Actions performed by the actor Responses from the system
1. The clerk issues a request to get mem-
ber transactions.

2. The system asks for the user ID of the
member and the date for which the trans-
actions are needed.

3. The clerk enters the identity of the user
and the date.

4. If the ID is valid, the system outputs
information about all transactions com-
pleted by the user on the given date.
For each transaction, it shows the type
of transaction (book borrowed, book re-
turned or hold placed) and the title of the
book. ;

5. Clerk prints out the transactions and
hands them to the user.

Steps:

The clerk receives a request from the user to give member transactions

The system asks for the user ID of the member and the date for which the transactions are required.
The clerk enters the ID of the user and the date of the transactions required

If the ID is valid, the system outputs information about all transactions completed by the user on the
given date along with the details of book borrowed, book returned, hold placed and the title of the
book.

5 Clerk prints out the transactions and hands them to the user

A WDN B

7™ Semester, Dept of CSE Page : 13



Software Architecture and Design Patterns (17CS731)

Use case Place a Hold and Remove a Hold

Steps:

-

W

Steps:

A WN P

Table 6.8  Use case Place a Hold

Actions performeéd by the actor Responses from the system
1. The clerk issues a request to place a
hold.

2. The system asks for the book's ID, the
ID of the member, and the duration of the
hold.

3. The clerk enters the identity of the user,
the identity of the book and the duration.
4. The system checks that the user and
book identifiers are valid and that Rule 6
is satisfied. If yes, it records that the user
has a hold on the book and displays that;
otherwise, it outputs an appropriate error

message.
Table 6.9  Use case Remove a Hold
Actions performed by the actor | Responses from the system
1. The clerk issues a request to remove a
hold.

2. The system asks for the book’s ID and
the ID of the member.

3. The clerk enters the identity of the user
and the identity of the book.

4. The system removes the hold that the
user has on the book (if any such hold ex-
ists), prints a confirmation and exits.

On receiving the request, clerk start processing to place a hold

The system asks details of the book such as book ID, the ID of the member and the duration of the

hold

The clerk enters all the necessary details.

1) The system checks that the user and book ID's whether it is valid or not as per Rule 6

i) If Rule 6 is satisfied, then the system records that the user has a hold on the book and displays
that; otherwise, it outputs an appropriate error message

On receiving the request, clerk start processing to remove a hold

The system asks details of the book such as book’s ID and the ID of the member

The clerk enters the 1D of the user and 1D of the book

The system removes the hold that the user has on the book, prints a confirmation and exits

7™ Semester, Dept of CSE Page : 13



Software Architecture and Design Patterns

(171S72)

Use case Process Holds

Steps:

AW

Table 6.10  Use case Process Holds

Actions performed by the actor

Responses from the system

I. The clerk issues a request to process
holds (so that Rule 5 can be satisfied).

3. The clerk enters the ID of the book.

3. If there is no hold, the book is then
shelved back to its designated location in
the library. Otherwise, the clerk prints out
the information, places it in the book and
replies in the affirmative or negative.

2. The system asks for the book’s ID.

4. The system returns the name and phone
number of the first member with an unex-
pired hold on the book. If all holds have
expired, the system responds that there is
no hold. The system then asks if there are
any more books to be processed.

6. If the answer is yes, the system goes to
Step 2; otherwise it exits.

=%

On receiving the request, clerk start processing to place a hold as per Rule 5 by notifying the

member who crosses the deadline.
The system asks book 1D
The clerk enters book ID

1) The system checks for the hold whether it is expired or not
i) If yes, the system records that there is no hold and ask for next boo_ks to be pr(_)cessed
i) If there is no hold, the book is then kept back to its designated location in the library and no

notification generated.

i) Clerk replies the system yes or no for the next book_s to be processed
If the answer is yes, the system goes to Step 2; otherwise it exits

7™ Semester, Department of ISE

Page : 16



Software Architecture and Design Patterns

(171S72)

Use case Renew Books

Steps:

O b wpNPE-

~N o

Table 6.1 1 Use case Ranew Books

Actions performed by the actor
1. Member makes a request 1O renew sev-
eral of the books that he/she has currently
checked out.

2. Clerk issues a request to renew books,

4. The clerk enters the ID into the system.

7. The clerk replies yes or no,

Responses from the system

3. System asks for the member’'s TD.

5. System checks the member’s record
to find out which books the member has
checked out, If there are none, the system
prints an appropriate message and exits;
otherwise it moves to Step 6.

6. The system displays the title of the next
book checked out 1o the member and asks
whether the book should be renewed.

8. The system attempts to renew the book
using Rwle 4 and reports the result. If
the system has displayed all checked-out
books, it reports that and exits; otherwise
the system goes to Step 6.

Member requests for the renew of the books
On receiving the request, clerk start processing the renew of books in the system
System asks for the member’s ID
The clerk enters the member ID into the system

I) System checks the record to find out which book is availed by the member
ii) If there are none, the system prints an appropriate message and exits; otherwise it moves to Step 6
The system displays the title of the next book to be renewed
The clerk replies yes or no
i) The system renews the book based on Rule 4 by checking holds on the book and reports the result.
i) If the system has displayed all checked-out books, it reports that and exits; otherwise the system

goes to Step 6

7™ Semester, Department of ISE

Page : 16



Software Architecture and Design Patterns (171S72)

Different Rules for the Library System

Rule number |Rule

Rule 1 Due-date for a book is one month from the date of
issue

Rule 2 All books are issuable

Rule 3 A book is removable if it is not checked out and if it
has no holds

Rule 4 A book is renewable if it has no holds on it

Rule 5 When a book with a hold is returned, the appropriate
member will be notified

Rule 6 Holds can be placed only on books that are currently
checked out

Guidelines to write use cases

= A use case must provide something of value to an actor or to the business.

= Use case should be functionally cohesive, i.e., they encapsulate a single service that the system
provides.

= Use case should be temporally cohesive. This notion applies to the time frame over which the use
case occurs.

= |f a system has multiple actors, each actor must be involved in at least one, and typically several use
cases.

* The model that we construct is a set of use cases.

= Use cases are written from the point of view of the actor.

= A use case describes a scenario.

= Use cases change over the course of system analysis.

Defining Conceptual Classes and Relationships

The last major step in the analysis phase involves the determination of the conceptual classes and the
establishment of their relationships. Example, in the library system, some of the major conceptual classes
include members and books. Members borrow books, which establish a relationship between them.

1 Design facilitation: Via use case analysis, we determine the functional requirement of the system.
Obviously, the design stage must determine how to implement the functionality. For this, the designers
should be in a position to determine the classes that need to be defined, the objects to be created, and
how the objects interact. This is better facilitated if the analysis phase classifies the entities in the
application and determines their relationships.

2 Added knowledge: The use cases do not completely specify the system. Some of these missing details
can be filled in by the class diagram.

3 Error reduction: In carrying out this step, the analysts are forced to look at the system more carefully.
The result can be shown to the client who can verify its correctness.

4 Useful documentation: The classes and relationships provide a quick introduction to the system for

someone who wants to learn it. Such people can join the project to carry out the design or
implementation or subsequent maintenance of the system.

7™ Semester, Department of ISE Page : 16



Software Architecture and Design Patterns (17CS731)

While using this approach, we must remember that natural languages are imprecise and that synonyms
may be found. We can eliminate the others as follows:

= Customer: Becomes a member, so it is effectively a synonym for member.

= User: The library refers to members alternatively as users, so this is also a synonym.

= Application form and request: Application form is an external construct for gathering
information, and request is just a menu item, so neither actually becomes part of the data
structures. Customer’s name, address, and phone number: They are attributes of a customer, so

the Member class will have them as fields.

= Clerk: An agent for facilitating the functioning of the library, so it has no software
representation.

= |dentification number: Become a part of a member.
= Data: Gets stored as a member.

= Information: Same as data related to a member.

System: Refers to the collection of all classes and software.

UML Diagram
(Unified Modeling Language Diagram)

Figure 2.2 UML diagram for the class library

Library

= In the above figure, system implies a conceptual class that represents all of the system.
= This class is Library UML without any attributes and methods.

Member

addrass

ghor

Figure 2.3 UML diagram for the class Member

= The UML convention is to write the class name at the top with a line below it and the attributes
listed just below that line.

7th Semester, Department of ISE Page : 26



Software Architecture and Design Patterns (17CS731)

of

Figure 2.4 UML diagram showing the association of Library
and Member

» An association between the conceptual classes Library and Member.
» The line between the two classes and the labels 1, *, and ‘maintains a collection of” just above it.

» There is only one instance of the Library that maintains a collection of zero or more members.

AUThROE

Figure 2.5 UML diagram for the class Book

Figure-2.6 UML diagram showing the association of Libr ary and Book

Figure 2.7 UML diagram sHowing the association Borrows between

1

Member and BookFigure.2.8 UML diagram showing the association

Holds

Holds between Member and Book

7th Semester, Department of ISE Page : 26



Software Architecture and Design Patterns (17CS731)

- date

Figure 2.9 Conceptual classes and their associations

All the conceptual classes and their associations are captured into a single diagram. To reduce complexity,
attributes of the Library, Member, and Book are omitted. As seen before, a relationship formed between
two entities is sometimes accompanied by additional information. This additional information is relevant
only in the context of the relationship.

2.4Using the Knowledge of the Domain

= Domain analysis is the process of analysing related application systems in a domain so as to discover what
features are common between them and which parts are variable. Thus, one of the goals of this approach is
reuse.

= Any area in which we develop software systems qualifies to be a domain.

= Examples include library systems, hotel reservation systems, university registration systems, etc. It is possible
to divide a domain into several interrelated domains.

= Where does the knowledge of a specific domain come from? It could be from sources such as surveys,
existing applications, technical reports, user manuals, and so on.

= A domain analyst analyses this knowledge to come up with Specifications, designs, and code that can be
reuse in multiple projects

Fig. 2.10 Domain analysis
2.5Design and Implementation

The main UML tool employed here is the sequence diagram. In a sequence diagram, the designer specifies
the details of how the behaviour specified in the model will be realized. This process requires the system’s
actions to be broken down into specific tasks, and the responsibility for these tasks to be assigned to the
various players in the system.

Design
During the design process, a number of questions need to be answered:

1 On what platform(s) (hardware and software) will the system run?

7th Semester, Department of ISE Page : 26



Software Architecture and Design Patterns (17CS731)

3 What user interfaces will the system provide? These include GUI screens, printouts, and other
devices.

4 What classes and interfaces need to be coded? What are their responsibilities?

5 How is data stored on a permanent basis? What medium will be used? What model will be used for
data storage?

6 What happens if there is a failure? Ideally, we would like to prevent data loss and corruption. What
mechanisms are needed for realizing this?

7 Will the system use multiple computers? If so, what are the issues related to data and code
distribution?

8 What kind of protection mechanisms will the system use?

Major subsystems
The first step in our design process is to identify the major subsystems. We can view the library system as
composed of two major subsystems:

1 Business logic: This part deals with input data processing, data creation, queries, and data updates.
This module will also be responsible for interacting with external storage, storing and retrieving data.

2 User interface: This subsystem interacts with the user, accepting and outputting information. It is
important to design the system such that the above parts are separated from each other so that they can
be varied independently.

Creating the Software Classes

The next step is to create the software classes. During the analysis, after defining the use case model,
We came up with a set of conceptual classes and a conceptual class diagram for the entire system.

In this phase there are two major activities.

1. Come up with a set of classes.

2. Assign responsibilities to the classes and determine the necessary data structures and methods.

In general, it is unlikely that we can come up with a design simply by doing these activities exactly once.
Several iterations may be needed and classes may need to be added, split, combined, or eliminated.

Member and Book
v' Each Member object comprises several attributes such as name and address, stays in the system for
a long period of time and performs a number of useful functions.
v Books stay part of the library over a long time and we can do a number of useful actions on them.
We need to instantiate books and members quite often. Clearly, both are classes that require
representation in software.

Library: Do we really need to make a class for this? To answer the question, let us ask what real library.
When a member thinks of a library, he/she thinks of borrowing and returning books, placing and removing
holds, i.e., the functionality provided by the library.

Borrows: This class represents the one-to-many relationship between members and books. In typical one-
to-many relationships, the association class can be efficiently implemented as a part of the two classes at the
two ends.

Holds: Unlike Borrows, this class denotes a many-to-many relationship between the Member and Book

7th Semester, Department of ISE Page : 26



Software Architecture and Design Patterns (17CS731)
classes. In typical many-to-many relationships, implementation of the association without using an

7th Semester, Department of ISE Page : 26



Software Architecture and Design Patterns (17CS731)

additional class is unlikely to be clean and efficient.

Assigning Responsibilities to the Classes
= Having decided on an adequate set of software classes, our next task is to assign responsibilities to
these. Since the ultimate purpose of these classes is to enable the system to meet the responsibilities
specified in the use case, we shall work with these system responsibilities to find the class
responsibilities.

O Sequence diagrams
= Describe interactions among classes in terms of an exchange of messages over time.

"~ Figure. 2.11 Sequence diagram for adding a new member

Add Member

Figure. 2.12 Sequence diagram for adding books

Member

" Figure. 2.13 Sequence diagram for issuing books

—

-
-

I

Book

7th Semester, Department of ISE Page : 26



Software Architecture and Design Patterns (17CS731)

Interface ==

!
i

hook

bookID

Clerk

Figure. 2.14 Sequence diagram for returning books

int

e ——Fjgure. 2.15 Sequence diagram for removing books

Figu re. 2.16 Sequence diagram for printing a member’s transactions

5]

Figure.2.17 Sequence diagram for placing aeid

Clerk

Iterator

7th Semester, Department of ISE Page : 26



Software Architecture and Design Patterns (17CS731)

| || | || Hold | | Member

Actor -

Member

Figure. 2.18 Sequence diagram for processing hotds

Mot L
T
|
'

Hata vaam
P e
? nember D, bookiD
romove ol nmbw 7. ook
P { ! mambeari( "V Membe Adry.membesdin
Actoe
ot )

i

-l

e
=4

Class Diagrams - Merber
Hopefully, at this stage have come up with all the software classes. To review:

1. Library
MemberList
Catalog
Member
Book

Hold
Transaction

=
@D

Nooakowd

= The relationships between these classes are shown in Figure.
=  Note that Hold is not shown as an Association class, but an independent class that connects

7th Semester, Department of ISE Page : 26



Software Architecture and Design Patterns (17CS731)

Member and Book.

= The new class Transactions added to record transactions; this has a dependency on Book since
it stores the title of the book.

Class Diagram for Library

Figure. 2.21 Relationships between the software classes

__Figure. Class'diagram for Library

Class Diagram fof Member

Figure. 2.23 Class diagram for Member

Class Diagram for Book

+

Class Qia@f@n Efﬁg@}ataloq

Boo

5 ——=Figure.2.25 Class diagr
Catalog glassClass Diagram-for MempberList v

-Figure. 2.28M(5Iass diagram for the Membertistctass ...

-+ -+

Class Digaram for Hold Figure.2.27 Class diagram for Hold

ansaction

Class Diagr'_

7" Semester |F—— | Page : 26




Software Architecture and Design Patterns (17CS731)

ss diagram for Transaction

User Interface -

I with the following options:

1 Add a member = l = _
Add books
Issue books 4 Return
Renew books —— 1 [
Remove books N
Place a hold on a book
Remove a hold on a book
Process holds +
9 Print a member’s transactions on a given
date10Save data for long-term storage
11Retrieve data from storage

12Help

13Exit

O~NO 0T WN

Data Storage

Following commands in our Ul
1. A command to save the data on a long-term basis.
2. A command to load data from a long-term storage device.
* When the first command is executed, we will copy all of the data onto secondary storage.
Similarly,
» when the second command is executed, the data stored on the storage device is copied to
recreate the object.

2.6.2 Implementing Our Design

1 In this phase, we code, test, and debug the classes that implement the business logic (Library, Book,
etc.) and Userlnterface.

2 An important issue in the implementation is the communication via thereturn values between the
different classes: in particular between Library andUserInterface.

Adding New Books
The addBooksmethod in UserlInterfaceis shown below:

public void addBooks() { Book result;
do {
String title = getToken("Enter book title™); String author = getToken("Enter author");
String bookID = getToken("Enter id");
result = library.addBook(title, author, bookID); if (result != null) {
System.out.printin(result);

7th Semester, Department of ISE Page : 26



Software Architecture and Design Patterns (17CSs731)

7th Semester, Department of ISE Page : 26



Software Architecture and Design Patterns (17CS731)

Telse {
System.out.printIn("Book could not be added");

}
if ('yesOrNo("Add more books?")) {

break;

}
} while (true);

¥

Issuing Books

public void issueBooks() { Book result;

String memberID = getToken("Enter member id"); if

(library.searchMembership(memberID) == null) {
System.out.printin(*No such member"); return;

}

do {
String bookID = getToken("Enter book id"); result = library.issueBook(memberID,
booklID); if (result !'= null){

System.out.printin(result.getTitle()+ " " + result.getDueDate());

}else {
System.out.printin("Book could not be issued");

}
if ('yesOrNo("Issue more books?")) {

break;
}

} while (true);

¥

The issueBookmethod in Librarydoes the necessary processing and returns a reference to the issued
book.

public Book issueBook(String memberld, String bookld) { Book book = catalog.search(bookld);
if (book == null) { return(null);
}

if (book.getBorrower() != null) { return(null);

}

Member member = memberList.search(memberld); if (member == null) {
return(null);

}

if (1(book.issue(member) && member.issue(book))) { return null;

}

return(book);

Printing Transactions

public void getTransactions() { Iterator result;
String memberID = getToken("Enter member id");

Calendar date = getDate("Please enter the date for which you want " +"records as mm/dd/yy");
result =library.getTransactions(memberID,date);

if (result == null) {
System.out.println (*Invalid Member ID");
}

else

7th Semester, Department of ISE Page : 26



Software Architecture and Design Patterns (18CS731)

{
while (result.hasNext ())

{

Transaction transaction = (Transaction) result.next ();
System.out.println (transaction.getType () + ""+transaction.getTitle () + "\n");

}

System.out.println ("\n There are no more transactions \n”);

}
}

Placing and Processing Holds

public void placeHold(Hold hold) {
transactions.add(new Transaction ("Hold Placed", hold.getBook().getTitle()
)); booksOnHold.add(hold);

¥

Toprocess a hold, Libraryinvokes the getNextHold method in Book, which returns the first valid

hold.public Hold getNextHold() {
for (Listlterator iterator = holds.listlterator(); iterator.hasNext();) {Hold hold = (Hold)
iterator.next ();iterator.remove();

if
(hol
d.is
Vali
d())
{

retu
n
hold
}
}

return null;

}



Software Architecture and Design Patterns (18CS731)

MODULE 2

Structural Patterns
v' Structural patterns are concerned with how classes and objects are composed to formlarger
structures.
v’ Structural class patterns use inheritance to compose interfaces or implementations.

Example: Multiple inheritances mixes two or more classes into one.Popular structural design
patterns include:

1. Adaptor 2 Bridge 3 Composite 4 Decorator 5 Facade 6 Flyweight 7 Proxy
ADAPTOR

Intent: To convert the interface of one class into another interface that the client expects.Adapter
pattern allows two incompatible classes to communicate with one another.

Also knows as: Wrapper
Motivation:

v Consider for example a drawing editor that lets users draw and arrange graphical elements
(lines, polygons, text, etc.) into pictures and diagrams.

» The interface for graphical objects is defined by an abstract class called Shape.
» The editor defines a subclass of Shape:

e aLineShape class for lines,

e aPolygonShape class for polygons, and so forth.

v" Geometric shapes like LineShape and PolygonShape are easy to implement, because their
drawing and editing capabilities are inherently limited. But a TextShape subclassis difficult to
implement, since even basic text editing involves :

» complicated screen update and
» Buffer management.
v" We can reuse TextView to implement TextShape, but the toolkit wasn't designed with Shape
classes in mind. So we can't use TextView and Shape objects interchangeably.

How can existing and unrelated classes like TextView work in an application thatexpects classes

with a different and incompatible interface?

e We could change the TextView class so that it conforms to the Shape interface,but that isn't an
option unless we have the toolkit's source code . Even if we did, it wouldn't make sense to
change TextView; the toolkit shouldn't have to adoptdomain-specific interfaces just to make



Software Architecture and Design Patterns (18CS731)

one application work.
e Instead, we could define TextShape so that it adapts the TextView interface toShape's.
We can do this in one of two ways:
(1) by inheriting Shape's interface and Text View's implementation or
(2) by composing a TextView instance within a TextShape and implementing
TextShape in terms of Text View's interface.



Software Architecture and Design Patterns (18CS731)

DrawingEditor Shape TextView
BoundingBox{) GetExtent()
CreatoManpuiator()
l I text
Line TextShape
BoundingBox{) BoundingBox() O ======~~4 ratum taxt->GetExtent() ﬁ
CreateManiputator() CreateManipulator() O-F-----
s vmmnml’utﬂumuluovﬁ

The above diagram illustrates the object adapter case.

» It shows BoundingBox requests, declared in class Shape, are converted to GetExtent
requests defined in Text View.
» Since TextShape adapts Text View to the Shape interface, the drawing editor can
reusethe otherwise incompatible Text View class.
» CreateManipulator operation, which returns an instance of the appropriate
Manipulatorsubclass.
Manipulator is an abstract class for objects that know how to animate a Shapein response to user
input, like dragging the shape to a new location.

Applicability: Use adapter pattern when:

1. You want to use an existing class, and its interface is not what you needed.

2. You want to create a reusable class that cooperates with the incompatible classes.

3. You need to use several subclasses (object adapter only) by adapting to their interfaces
(by sub classing each subclass) which is impractical. An object adapter can adapt the
interface of their parent class.

Structure: A class adapter uses multiple inheritance to adapt one interface to another. The
structure of class adapter is shown below:

Client Target Adaptee

Hequest() SpecificRequest()

A A

(implementation)

Adapter

Request() O ========1 SpecificRequest()

An object adapter relies on object composition. The structure of an object adapter is as shownbelow:

Client — ™ Target —# Adaptee
Request() SpecificRequest()
7th
adaplee
Adapter

Request() O-f=~====rew=- adaptee->SpeciticRequest()




Software Architecture and Design Patterns (18CS731)

Participants:

= Target (shape): Defines the domain specific interface the client uses.

= Client (Drawing Editor): Collaborates with the objects conforming to the Targetinterface.
= Adaptee (TextView): Defines an existing interface that needs to be adapted.

= Adapter(TextShape): Adapts the interface of the Adaptee to the Traget interface.

Collaborations:

« Clients call operations on an Adapter instance . In turn, the adapter calls Adaptec

operations that carry out the request.
Consequences: Class and object adapters have different trade-offs.

A class adapter:
v' Adapts Adaptee to Target by committing to a concrete Adapter class. As a
consequence, a class adapter won’t work when we want to adapt a class and its

subclasses.
v Let Adapter to override some of the behavior of the Adaptee since it is a subclass of

Adaptee.
v Introduces only one object, and no additional pointer indirection is needed to get to the

Adaptee.

An object adapter:
v’ Lets a single Adapter work with many Adaptees i.e the Adaptee itself and all of its

subclasses. The Adapter can also add functionality to all Adaptees at once.
v Makes it harder to override Adaptee behavior.

Here are other issues to consider when using the Adapter pattern:

1. How much adapting does Adapter do?

The amount of work Adapter does depends on how similar the Target interface is toAdaptee's.
2. Pluggable adapters.

Are classes with built-in interface adaptation?
3. Using two-way adapters to provide transparency.

They're useful when two different client s need to view an object differently.

T

Two-way class adapter conforms to both of the adapted classes and can work in eithersystem.
Implementation: Some of the issues to keep in mind while implementing adapter pattern
are given below:

1. Implementing class adapters in C++: Adapter would inherit publicly from Target and privately
from Adaptee. Thus Adapter would be a subtype of Target but not of Adaptee.

2. Pluggable adapters: Three ways to implement pluggable adapters for the TreeDisplay

A narrow interface consisting of only a couple of operations is easier to adapt than an interface
with dozens of operations



Software Architecture and Design Patterns (18CS731)

The narrow interface leads to three implementation approaches:

a Using abstract operations: Define corresponding abstract operations for the
narrow Adaptee interface in the TreeDisplay class. Subclasses must implement
the abstract operations and adapt the hierarchically structured object.

b. Using delegate objects: In this approach, TreeDisplay forwards requests for
accessingthe hierarchical structure to a delegate object.

¢ Parameterized adapters: The usual way to support pluggable adapters in
Smalltalk is to parameterize an adapter with one or more blocks.. A block can
adapt a request, and theadapter can store a block for each individual request.

Sample code:

elams Lhagpe (
public:

Shape ()

virtual verid DBowarndlncgidasx (

PFerinmnus borvtomie e, Poine s Copright
) consc ;
virtua Manipulator * CreateManipulator () const :

)

clams:s ToxtLViow
Ppubddlicecs
TextViaewd() ;
veoaid GetOrigind(cCoords =, Coords ) oMMt g

volid GettExtent (Coords&s widouhn, Coords heaelighet) cCoOMmmU g
virtual Doar ) ToEmpty () coonso

Sha{pe assumes a bounding box defined by its opposing corners .
In contrast , TextView is defined by an origin , height , and width. Shape also defines a

CreateManipulator operation for creating a Manipulator object , which knows how to animate
a shape when the user manipulates it.

class TextShape : public Shape, private TextView (
public:
TextShapel)

virtua®l wvoid PoundingBox(
Point& bottomLeft, Polnt& topRlighc
) const;
virtual bool IsEmpty () const:
virtual Manipulator* CreatceManipulator{) const;

I

The BoundingBox operation converts Textview's interface to conform to Shape's.

verld lTexutShape : : BoundingBRaox 14
FPao it s borttomi.eat o, FPoint S LoprR gt

) Cronst {
Clerear <3 Eoacat. t.cormn LeaEe, Wil iy, he«ricgghat 3
GertOrigin(bottom, lefe) 2

GecClExtent (widuh, height) ;

ot tomlioe o = rVaolilin (bototam, lerft) ;
toplRright — FPoint (Hhot - om . height lef . wicddtnh) ;

Th e ISEmpty operation demonstrates the direct forwarding of request s common in adapter
implementations:

Page: 11



Software Architecture and Design Patterns (18CS731)

Finally , we define CreateManipulator that supports manipulation of a TextShape.

Manipulator* TextShape::CreateManipulator () const {
return new TextManipulator (this);



Software Architecture and Design Patterns (18CS731)

Known Uses

I.  ET++Draw reuses the ET++ classes for text editing by using a TextShape adapter class.
ii.  Interviews 2.6 defines an object adapter called GraphicBlock, a subclass of Interactor
that contains a Graphic instance. The GraphicBlock adapts the interface of the Graphic
class to that t of Interactor.
ii.  ObjectWorks\Smalltalk includes a subclass of ValueModel called PluggableAdaptor.
A PluggableAdaptor object adapts other objects to the ValueModel interface
iv.  NeXT's AppKit [Add94 ] use delegate objects to perform interface adaptation.

Related Patterns

> Bridge has a structure similar to an object adapter, but Bridge has a different intent: It
IS meant to separate an interface from its implementation so that they can be varied
easily and independently. An adapter is meant to change the interface of an existing

object.

> Decorator enhances another object without changing its interface. A decorator is thus
more transparent to the application than an adapter is. As a consequence, Decorator
supports recursive composition, which isn't possible with pure adapters.

> Proxy defines a representative or surrogate for another object and does not change its

interface.

BRIDGE(Object Structural)

Intent: To decouple an abstraction from its implementation so that both can be changed
independently.

Also knows as: Handle/Body

Motivation:

Consider the implementation of a portable Window abstraction in a user interface toolkit. This
abstraction should enable us to write applications that work on both the X Window System and
IBM's Presentation Manager (PM) platform. But this approach has two drawbacks:

1. To support Icon Windows for both platforms, we have to implement two new classes
, XlconWindow and PMIconWindow.

e [
A
= [ 1
| xwWindow |  PMWindow| | xwindow |  PMWindow| LIconthﬂ

| XiconWindow | |PMiconWindow|




Software Architecture and Design Patterns (18CS731)

2. It makes client code platform-dependent. Whenever a client create s a window . For
example, creating an XWindow object binds the Window abstraction to the X Window
implementation, which makes the client code dependent on the X Window
implementation. This , inturn, makes it harder to port the client code to other platforms.

The Bridge pattern addresses these problems by putting the Window abstraction and its
implementation in separate class hierarchies.

wWindow s wWindowilmg
DrawText() DeviOoraw Teoxt()
DrawMact() < }- - DeviDrsawl irver()

. Imp -=DovDrawline
Yoo = - Imp—>DoavDDrawl ins
Imp—>DavDrawl ine
P = DavDrawline

R | — i ) 1 - | [
lconWindow TransionmtWindow lendowlmp PMwWindowlimeg
DrawBordeor() 9 DrawClosoBox() ¢ DoevDrawText() o - ) DeavDrawl ine()

'y DovODrawlLine() < . DeoviDrawToexi()

g::g.’;‘;"‘m'( ‘.51 I Druwl»;ncﬂ()-sﬂ onr-wl.m.o .ﬂ [ ;mestnng(ﬂ
We refer to the relationship between Window and Windowlmp as a bridge , because it bridges
the abstraction and its implementation, letting them vary independently.

Applicability: Use bridge pattern when:

e To avoid permanent binding between abstraction and implementation.
e Both abstractions and implementations should be extensible by creating subclasses.
e Changes in implementation should have no impact on client.

e To share and implementation among multiple objects, and this fact should be hiddenfrom
client.

e (C++) you want to hide the implementation of an abstraction completely from clients.
Structure: The structure of bridge pattern is as shown below:

rr——— e
Oparation() ¢ Operrmtionitongy)
| et I mp .-Opomncmlmo(?ﬁ A
=k 1
e ] Conor ple A Conor o 8
—— Opearationionp() Oparatonimp()

Participants: Following are the participants in bridge pattern:

e Abstraction(window): Defines the abstraction interface and maintains a reference to an
object of type Implementor

o RefinedAbstraction (Iconwindow): Extends the interface defined by Abstraction.

e Implementor (WindowIlmp): Defines the interface for implementation classes.

e Concretelmplmentor (XWindowImp, PMWindowImp): Implements the Implementor
interface and defines its concrete implementation



Software Architecture and Design Patterns (18CS731)

Collaborations: Abstraction forwards client requests to its Implementor object.
Consequences: The bridge pattern has the following consequences:

1. Decoupling interface and implementation: An implementation is not bound permanently
to an interface. The implementation of an abstraction can be configured at run-time. It's even
possible for an object to change its implementation at run-time.

2. Improved extensibility: You can extend the Abstraction and Implementor hierarchies
independently.

3. Hiding implementation details from clients: You can shield clients from implementation
details, like the sharing of implementor objects and the accompanying reference count
mechanism.

Implementation: Following issues should be considered while implementing bridge pattern:

1. Only one Implementor: In situations where there's only one implementation, creating an
abstract Implementor class isn't necessary. This is a degenerate case of the Bridge pattern;
there's a one-to-one relationship between Abstraction and Implementor. Nevertheless, this
separation is still useful when a change in the implementation of a class must not affect its
existing clients—that is, they shouldn't have to be recompiled, just relinked.

2. Creating the right Implementor object: How, when, and where do you decide which
Implementor class to instantiate when there's more than one? If Abstraction knows about all
Concretelmplementor classes, then it can instantiate one of them in its constructor; it can decide
between them based on parameters passed to its constructor. If, for example, a collection class
supports multiple implementations, the decision can be based on the size of the collection. A
linked list implementation can be used for small collections and a hash table for larger ones.

3.Sharing implementors. The code for assigning handles with shared bodies has the following
general form:

Handle& Handle: :operator= (const Handle& other) (
other._body->Ref () ;
_body->Unref () ;

if (_body->RefCount ()
delete _body;

]
I
o
—_

}
_body = other._body;

return *this;
}

4. Using multiple inheritance. You can use multiple inheritance in C++ to combine an
interface with its implementation



Software Architecture and Design Patterns (18CS731)

Sample Code

The Window class defines the window abstraction for client applications:

class Window {
public:
Window(View* contents) ;

// reguests handled by window
virtual void DrawContents();

virtual void Opentl);
virtual void Cleose();
virtual void Iconify();
virtual void Deiconify();

// regquests forwarded to implementaticn
virtual void SetOrigin{const Point& at);
virtual void SetExtent (const Point& extent);
virtual void Raise():;

virtual void Lower();

virtual void DrawLine(const Point&, const Pointk);
virtual void DrawRect (const Point&, const Point&);
virtual void DrawPolygon(const Point([], int n);

virtual void DrawText (const char*, const Point&);

protected:
WindowImp* GetWindowImp () :
View* GetView();

private:

WindowInmp* _imp;

View* _contentm; // the window’'s contents
)i

window maintains a reference to a WindowlImp, the abstract class that declares an
interface to the underlying windowing system.

class WindowlImp (
public:
virtual void ImpTop() = 0;
virtual void ImpBottom() = 0;
virtual vold ImpSetExtent (const Point&) = 0;
virtual void ImpSetOrigin(conat Point&) = 0;

virtual void DeviceRect (Coord, Coord, Coord, Coord) = 0;
virtual void DeviceText (const char*, Coord, Coord) = 0;
virtual void DeviceBitmap (const char*, Coord, Coord) = 0;
// lots more functions for drawing on windows.. .
protected:
WindowlImp ()
)2



Software Architecture and Design Patterns

(18CS731)

Known Uses

>

>

>

ET++ Window/WindowPort design extends the Bridge pattern in that the WindowPort
also keeps a reference back to the Window.

NeXT's AppKit [Add94] uses the Bridge pattern in the implementation and display of
graphical images.

AppKit provides an NXImage/NXImageRep bridge. NXImage defines the interface for
handling images. The implementation of images is defined in a separate NXImageRep
class hierarchy having subclasses such as NXEPSImageRep, NXCachedlmageRep, and
NXBitMaplmageRep.

Related Patterns

1)
2)

An Abstract Factory can create and configure a particular Bridge.

The Adapter pattern is geared toward making unrelated classes work together. It is
usually applied to systems after they're designed. Bridge, on the other hand, is use d up-
front in a design to let abstractions and implementations vary independently.

COMPOSITE(Obiject Structure)

Intent: To compose objects into tree structures to represent part-whole hierarchies. Composite
pattern lets client treat individual objects and compositions of objects uniformly.

Motivation:

v

v

Graphics applications like drawing editors and schematic capture systems let users
build complex diagrams out of simple components .

The user can group components to form larger components, which in turn can be
grouped to form still larger components.

A simple implementation could define classes for graphical primitives such as Text and
Lin s plus other classes that act as containers for these primitives.

Bu t there's a problem with this approach :

o Code that uses these classes must treat primitive and container objects differently,.
Having to distinguish these objects makes the application more complex. The
Composite pattern describes s how to use recursive composition so that clients don't

have to make this distinction.

Uine Rectangle Text Picture

i Ovawr0 Draw() D) O == o fmm e I P — 3
Add(Graphic g) ©F----=1 g.meSr
Remove(Graphic) ;
GetChild(int) - ’ add g 1o list of gr ﬂ




Software Architecture and Design Patterns (18CS731)

v’ Graphic declares operations like Draw that are specific to graphical objects. It also
declares operations that all composite objects share , such as operations for accessing
and managing its children.

v The subclasses Line , Rectangle, and Text define primitive graphical objects. These
classes implement draw to draw lines , rectangles , and text, respectively .

v" Since primitive graphics have no child graphics, none of these subclasses implements
child-related

The following diagram shows a typical composite object structure of recursively composed
Graphic objects:

Applicability: Use composite pattern when:

1. You-want to represent part-whole hierarchies of objects.
2. You want clients to be able to ignore the difference between compositions of objects
and individual objects.

Structure: The structure of composite pattern is as shown below:

Clienmt Component L:

Operation()
Add(Component)
Remove(Component)
GelChild(int)

A

| 1
Loaf Composite

children

forall g in childr
Operation() Operation() ©-==«==~ S i o‘q &:valkm()“.“

Add(Component)
Remove(Component)
GetChild(int)

A typical Composite object structure might look like this:



Software Architecture and Design Patterns

(18CS731)

Participants: Following are the participants in composite pattern:

1.

4.

Component: Declares the interface for objects in the composition. Declares aninterface for
accessing and managing its child components.

Leaf: Represents leaf objects in the composition. A leaf has no children. Definesbehavior for
primitive objects in the composition.

Composite: Defines behavior for components having children. Stores child components.
Implements child-related operations in the composite interface.

Client: Manipulates objects in the composition through the Component interface.

Collaborations: Clients use the Component class interface to interact with objects in the
composite structure.

Consequences: The composite pattern:

1.

Defines class hierarchies consisting of primitive objects and composite objects. Primitive
objects can be composed into more complex objects, which in turn can be composed, and so
on recursively.

Makes the client simple. Clients can treat composite structures and individual objects
uniformly.

Makes it easier to add new kinds of components. Newly defined Composite or Leaf subclasses
work automatically with existing structures and client code.

Can make your design overly general. The disadvantage of making it easy to add new
components is that it makes it harder to restrict the components of a composite. Sometimes
you want a composite to have only certain components.

Implementation: Following are the issues to consider when implementing composite pattern:

1. Explicit parent references: Maintaining references from child components to their parent can
simplify the traversal and management of a composite structure. The parent reference simplifies
moving up the structure and deleting a component. Parent references also help support the Chain of
Responsibility pattern.



Software Architecture and Design Patterns (18CS731)

2. Sharing components: It's often useful to share components, for example, to reduce storage
requirements. But when a component can have no more than one parent, sharing components becomes
difficult.

3. Maximizing the Component interface: One of the goals of the Composite pattern is to make clients
unaware of the specific Leaf or Composite classes they're using. To attain this goal, the Component
class should define as many common operations for Composite and Leaf classes as possible. The
Component class usually provides default implementations for these operations, and Leaf and
Composite subclasses will override them.

4. Declaring the child management operations: Although the Composite class implements the Add and
Remove operations for managing children, an important issue in the Composite pattern is which
classes declare these operations in the Composite class hierarchy.

5. Should Component implement a list of Components: You might be tempted to define the set of
children as an instance variable in the Component class where the child access and management
operations are declared. But putting the child pointer in the base class incurs a space penalty for every
leaf, even though a leaf never has children.

6. Child ordering: Many designs specify an ordering on the children of Composite. In the earlier
Graphics example, ordering may reflect front-to-back ordering. If Composites represent parse trees,
then compound statements can be instances of a Composite whose children must be ordered to reflect
the program.

7. Caching to improve performance: If you need to traverse or search compositions frequently, the
Composite class can cache traversal or search information about its children. The Composite can
cache actual results or just information that lets it short-circuit the traversal or search.

8. Who should delete components: In languages without garbage collection, it's usually best to make
a Composite responsible for deleting its children when it's destroyed. An exceptiontothis rule is when
Leaf objects are immutable and thus can be shared.

9. What's the best data structure for storing components: Composites may use a variety of data
structures to store their children, including linked lists, trees, arrays, and hash tables. The choiceof data
structure depends (as always) on efficiency.

Sample code: A diagram is a structure that consists of Objects such as Circle, Lines, Triangle
etc and when we fill the drawing with color (say Red), the same color also gets applied to the
Objects in the drawing. Here drawing is made up of different parts and they all have same
operations.



Software Architecture and Design Patterns (18CS731)

Composite Pattern consists of following objects.

1. Base Component — Base component is the interface for all objects in the composition, client
program uses base component to work with the objects in the composition. It can be an interface
or an abstract class with some methods common to all the objects.

2. Leaf — Defines the behaviour for the elements in the composition. It is the building block for
the composition and implements base component. It doesn’t have references to other
Components.

3. Composite — It consists of leaf elements and implements the operations in base component.

Here 1 am applying composite design pattern for the drawing scenario.

Base Component: Base component defines the common methods for leaf and composites, we
can create a class Shape with a method draw(String fillColor) to draw the shape with given

color.
/IShape.java
public interface Shape

{
}

public void draw(String fillColor);

Leaf Objects: Leaf implements base component and these are the building block for the
composite. We can create multiple leaf objects such as Triangle, Circle etc.

/[Triangle.java
public class Triangle implements Shape

{
@Override
public void draw(String fillColor)
{
System.out.printin(**Drawing Triangle with color "+fillColor);
}
}

/[Circle.java
public class Circle implements Shape
{
@Override
public void draw(String fillColor)
{

System.out.printin(**Drawing Circle with color **+fillColor);

1



Software Architecture and Design Patterns

(18CS731)

Composite: A composite object contains group of leaf objects and we should provide some
helper methods to add or delete leafs from the group. We can also provide a method to remove

all the elements from the group.

//Drawing.java

import java.util.ArrayList;

import java.util.List;

public class Drawing implements Shape

{ [/lcollection of Shapes

private List<Shape> shapes = new ArrayList<Shape>();
@Override

public void draw(String fillColor)

{
for(Shape sh : shapes)
{ sh.draw(fillColor); }

} /ladding shape to drawing

public void remove(Shape s)

{  shapes.remove(s); }
/lremoving all the shapes
public void clear()
{
System.out.printIn("Clearing all the shapes from drawing");
this.shapes.clear();

¥
¥

public void add(Shape s)
{
this.shapes.add(s);
} //removing shape from drawing

/[TestCompositePattern.java

public class TestCompositePattern
{ public static void main(String[] args)
{ Shape tri = new Triangle();
Shape tril = new Triangle();
Shape cir = new Circle();
Drawing drawing = new Drawing();



Software Architecture and Design Patterns (18CS731)

drawing.add(tril);
drawing.add(tril);
drawing.add(cir);
drawing.draw("Red");
drawing.clear();
drawing.add(tri);
drawing.add(cir);
drawing.draw("Green");

¥
¥

Known Uses

ET++ (with its VObjects [WGM88] ) and

Interviews (Style s [LCI+92],

Graphics [VL88] , and

The RT L Smalltalk compiler framework

RegisterTransferSet , is a Composite class for representing assignments that change
several registers at once.

6. Financial domain , where a portfolio aggregates individual assets.

abrwpdneE

Related Patterns

1 Decorator is often used with Composite. When decorators and composites are used
together, they will usually have a common parent class. So decorators will have to
support the Component interface with operations like Add, Remove, and GetChild.

2 Flyweight lets you share components, but they can no longer refer to their parents.

3. Iterator can be used to traverse composites.

4. Visitor localizes operations and behavior that would otherwise be distributed across
Composite and Leaf classes.

Decorator Pattern

Intent: To attach additional responsibilities to an object dynamically. Decorator provides an
alternative to subclassing for extending the functionality.

Also knows as: Wrapper
Motivation
v" Sometimes we want to add responsibilities to individual objects , not to an entire class
v A graphical user interface toolkit, for example, should let you add properties like

borders or behaviors like scrolling to any user interface component.
v One way to add responsibilities is with inheritance.



Software Architecture and Design Patterns (18CS731)

v"Inheriting a border from another class puts a border around every subclass instance,this
is inflexible. A client can't control how and when to decorate the component with a
border.

v A more flexible approach is to enclose the component in another object that adds the
border. The enclosing object is called a decorator .

v’ The decorator forwards requests to the component and may perform additional actions
(such as drawing a border) before or after forwarding.

Sotne apphicaionn wuald benelyt
from asng objects \; madel overy
sspoct of thew fenctionalty . bat
& nalve design approach woold be
probebinively expensive

aBorderDecorator

For exmople. most dovwment o
Hors madulanise thear tea! forms

nang and adiing (acines 10 sorse
aScroliDecorator * extant. However, they invanashly

wop shon of using obyects 10

reguenent o) charsoter sl

raphical clenwent in (he docwment

f\nn. w0 would prosnose Moty liry

o e fnest evel o e

wpphGation Tex! and graphics

aTextView could be treated uniformly wath :
'3. -0
For example:

v Suppose we have a Text View object that displays text in a window.

v Text View has no scroll bars by default, because we might not always need them. When
we do, we can use a ScrollDecorator to add them.

v Suppose we also want to add a thick black border around the Text View . We can use
a BorderDecorator to add this as well.

v" We simply compose the decorators with the Text Vie w to produce the desired result.

The following object diagram shows how to compose a Text View object with BorderDecorator
and ScrollDecorator objects to produce a bordered, scrollable text view:

(a—Bo«lttﬂoeontmN
\_component e

_( ascroliDecorator ———

—kcompanm - L J

The ScrollDecorato r and BorderDecorator classes are subclasses of Decorator, an abstract
class for visual components that decorate other visual components.



Software Architecture and Design Patterns

(18CS731)

VisualComponent
Draw()
[ | .
TextView Decorator
Draw() ORI Y, - e o St U e o e o e o g
(. 1

ScroliDecorator BorderDecorator
Draw() Draw() O---=-==~~
ScrollTo() DrawBorder()
scroitPosition borderWidth

- -

YA

component->Draw() ﬁ

Decorator-Draw(), ﬁ
DrawBorder();

v Visual Component defines their drawing and event handling interface.

v Note how the Decorator class simply forwards draw requests to its component, and how
Decorator subclasses can extend this operation. Decorator subclasses are free to add
operations for specific functionality.

Applicability:

1. To add additional responsibilities to individual objects dynamically and transparently,
that is, without affecting other objects.

For responsibilities that can be withdrawn.
When extension by subclassing is impractical.

Structure: The structure of decorator pattern is as shown below:

addedState

component
ConcreteComponent Decorator
Operation() Operation() O ----~----~---=--=--====---
[ ]
ConcreteDecoratorA ConcreteDecoratorB
Operation() Operation{) O -----
AddedBehavior()

component->Operation()

Decorator::Operation(), ~
AddedBehavior();




Software Architecture and Design Patterns (18CS731)

Participants

» Component (VisualComponent) - defines the interface for objects that can have responsibilities
added to them dynamically.

« ConcreteComponent (TextView) - defines an object to whic h additional responsibilitie s can be
attached.

« Decorator - maintains a reference to a Component object and defines an interface that conforms to
Component's interface.

 ConcreteDecorator (BorderDecorator, ScrollDecorator) - Adds responsibilities to the component

Collaborations: Decorator forwards requests to its component object. It may optionallyperform
additional operations before and after forwarding the request.

Consequences: The decorator pattern has atleast two key benefits and two liabilities:

1. More flexibility than static inheritance: The Decorator pattern providesa more flexible way to add
responsibilities to objects than can be had withstatic (multiple) inheritance.

2. Avoids feature-laden classes high up in the hierarchy: Decorator offersa pay-as-you-go approach
to adding responsibilities. Instead of trying tosupport all foreseeable features in a complex,
customizable class, you candefine a simple class and add functionality incrementally with
Decoratorobjects.

3. A decorator and its component aren't identical: A decorator acts as atransparent enclosure. But from
an object identity point of view, adecorated component is not identical to the component itself.

4. Lots of little objects: A design that uses Decorator often results in systemscomposed of lotsof little
objects that all look alike. The objects differonly in the way they are interconnected, not in their class
or in the valueof their variables.

Implementation: Following issues should be considered when applying the decorator pattern:

1. Interface conformance: A decorator object's interface must conform to the interface of the
component it decorates. ConcreteDecorator classes must therefore inherit from a common class.

2. Omitting the abstract Decorator class: There's no need to define an abstract Decoratorclass when
you only need to add one responsibility.

3. Keeping Component classes lightweight: To ensure a conforming interface, components and
decorators must descend from a common Component class. It's important to keep this common class
lightweight; that is, it should focus on defining an interface, not on storing data.

4. Changing the skin of an object versus changing its guts: We can think of a decorator as a skin over
an object that changes its behavior. An alternative is to change the object's guts. The Strategy (349)
pattern is a good example of a pattern for changing the guts.



Software Architecture and Design Patterns (18CS731)

Sample Code

The following cod e shows how to implement user interface decorators in C++.

class VisualComponent {
public:
VisualComponent () ;

virtual void Drawl();
virtual void Resizel();
/7

}:

We define a subclass of VisualComponent called Decorator

class Decorator : public VisualComponent (
public:

Decorator (VisualComponent?*) ;

virtual vecid Draw();
virtual void Resizel():;
T repcn

private:

VisualComponent* _component;
};:

Subclasses of Decorator define specific decorations. For example, the class BorderDecorator
adds a border to its enclosing component

class BorderDecorator : public Decorator ({
public:

BorderDecorator (VisualComponent*, int borderWidth) ;

virtual void Draw();

private:

void DrawBorder (int);
private:

int _width;
};

void BorderDecorator::Draw () (
Decorator: :Draw();
DrawBorder (_width) ;



Software Architecture and Design Patterns (18CS731)

TextView is a VisualComponent, which lets us put it into the window:

window->SetContents(textView);

Bu t w e want a bordere d an d scrollabl e TextView. S o w e decorat e i t accordingl y
before putting it in the window.

window->SetContents (
new BorderDecorator(
new ScrollDecorator(textView), 1
)

Known Uses

1. Interviews [LVC89, LCI+92],

2. ET++ [WGM88],

3. ObjectWorks\Smalltalk class library

4. A DebuggingGlyph prints out debugging information before and after it
forwards a layout request to its component.

Related patterns:

1. Adapter: A decorator is different from an adapter in that a decorator only
changes an object's responsibilities, not its interface; an adapter will give an
object a completely new interface.

2. Composite: A decorator can be viewed as a degenerate composite with only
one component. However, a decorator adds additional responsibilities—it isn't
intended for object aggregation.

3. Strategy: A decorator lets you change the skin of an object; a strategy lets you
change the guts. These are two alternative ways of changing an object.



Software Architecture and Design Patterns (18CS731)

FACADE (Object Structure)

Intent: Provide a unified interface to a set of interfaces in a subsystem. Facade defines a
higher-level interface that makes the subsystem easier to use.

Motivation

v' Structuring a system into subsystems helps reduce complexity.

v A common design goal is to minimize the communication and dependencies between
subsystems.

v/ One way to achieve this goal is to introduce a facade object that provides a single,
simplified interface to the more general facilities of a subsystem.

client ciasses

subsystem classes

Consider for example a programming environment that gives applications access to its
compiler subsystem. This subsystem contains classes such as Scanner, Parser, ProgramNode,
BytecodeStream, and ProgramNodeBuilder that implement the compiler. Some specialized
applications might need to access these classes directly. But most clients of a compiler
generally don't care about details like parsing and code generation; they merely want to compile
some code. For them, the powerful but lowlevel interfaces in the compiler subsystem only
complicate their task.

To provide a higher-level interface that can shield clients from these classes, the compiler
subsystem also includes a Compiler class. This class defines a unified interface to the
compiler's functionality. The Compiler class acts as a facade: It offers clients a single, simple
interface to the compiler subsystem.



Software Architecture and Design Patterns (18CS731)

Compller

‘..V.. ._. - ——— - e Com'e() * —————— A " AP ADADT PO OO0, P
o ‘

Stream : : E “» Scanner |-- Token
+ . E i5a Parser Symbol I
BytecodeStream i\ “ = ProgramNodeBulider | - -» ProgramNode i
A i
. ——

1

CodeGenerator el StatementNode {
'
______ X ExpressionNode %
i | ] |
StackMachineCodeGenerator RISCCodeGenerator VariableNode |
e T |

Applicability:
Use facade pattern :

1. To provide a simple interface to a complex system.

2. To decouple a subsystem from clients and other subsystems, thereby promoting system
independence and portability.

3. To define an entry point to each subsystem level. If subsystems are dependent, then the
dependencies can be simplified by making them communicate with each other solely
through their fagade.

Structure

Facade

subsystem classes

L X

1




Software Architecture and Design Patterns (18CS731)

Participants: The participants in the facade pattern are:

1 Facade (compiler): Knows which subsystem classes are responsible for a request.
Delegates client requests to appropriate subsystem objects.

2. Subsystem classes (scanner, parser, programnode....): Implement subsystem
functionality. Handle work assigned by the Facade object. Have no knowledge of the
Facade.

Collaborations: Clients communicate with the subsystem by sending requests to the Facade,
which forwards them to the appropriate subsystem object.

Consequences: The facade pattern offers the following benefits:

1. It shields clients from subsystem components, thereby reducing the number of objects that
clients deal with and making the subsystem easier to use.

2. It promotes weak coupling between the subsystem and its clients. Often the components in
a subsystem are strongly coupled. Weak coupling lets you vary the components of the
subsystem without affecting its clients.

3. It doesn't prevent applications from using subsystem classes if they need to. Thus you can
choose between ease of use and generality.

Implementation: Following issues should be considered when implementing facade pattern:

1. Reducing client-subsystem coupling: The coupling between clients and the subsystem can

be reduced even further by making Facade an abstract class with concrete subclasses for
different implementations of a subsystem. Then clients can communicate with the subsystem
through the interface of the abstract Facade class. This abstract coupling keeps clients from
knowing which implementation of a subsystem is used.

2. Public versus private subsystem classes: A subsystem is analogous to a class in that both
have interfaces, and both encapsulate something—a class encapsulates state and operations,
while a subsystem encapsulates classes. And just as it's useful to think of the public and private
interface of a class, we can think of the public and private interface of a subsystem.

Sample Code :
Let's take a closer look at how to put a facade on a compiler subsystem.
The Scanner class takes a stream of characters and produces a stream of tokens, one token at a
time.



Software Architecture and Design Patterns (18CS731)

class Scanner {

public:
Scanner (istream&) ;
virtual “Scanner();

virtual Tokenk Scanl);
private:
istream& _inputStream;

The class Parser uses a ProgramNodeBuilder to construct a parse tree from a Scanner's tokens.

class Parser {
public:
Parser():;
virtual “Parser|();

virtual void Parse(Scanner&, ProgramNodeBuilder&);
45

Parser calls back on ProgramNodeBuilder to build the parse tree incrementally.

class ProgramNodeRuilder (
public:
ProgramNodeBuilder () ;

virtual ProgramNode* NewVariable!(
const char* variableName
) const;

virtual ProgramNode* NewAssignment (

ProgramNcde* variable, ProgramNode* expression
) const;

virtual ProgramNode* NewReturnStatement (
ProgramNode* value
) const;

virtual ProgramNode* NewCondition(
ProgramNode* condition,

ProgramNode* truePart, ProgramNode* falsePart
) const;

//



Software Architecture and Design Patterns (18CS731)

ProgramNode* GetRootNode():;

private:
ProgramNode* _node:;

|
ProgramNode defines an interface for manipulating the program node and its children, if any.

class ProgramNode |

public:
// program node manipulation
virtual void GetSourcePosition(int& line,

//

int& index);

// child manipulation
virtual void Add(ProgramNode*) ;
virtual void Remove (ProgramNode*) ;

//

virtual void Traverse (CodeGeneratork) ;
protected:

ProgramNode!() ;
)32

The Traverse operation takes a CodeGenerator object. ProgramNode subclasse s use this object
to generate machine cod e in the form of Bytecode objects on a BytecodeStream.

class CodeGenerator {

public:
virtual void Visit(StatementNode*);

virtual void Visit (ExpressionNode*):
//

protected:
CodeGenerator (BytecodeStream&) ;

protected:
BytecodeStream& _output;

):
ExpressionNode defines Traverse as follows:



Software Architecture and Design Patterns (18CS731)

void ExpressionNode::Traverse (CodeGenerator& cg) ¢
cg.Visit(this);

ListTterator<ProgramNode*> i(_children);

for (i.First(); !i.IsDone(); i.Next()) {
i.Currentlitem()->Traverse(cqg);
)
}

Compiler provides a simple interface for compiling source and generating code for a particular
machine.

class Compiler ({
public:
Compiler();

virtual void Compile(istream&, BytecodeStreamk);
};

void Compiler::Compile (
istream& input, BytecodeStream& output
) |
Scanner scanner (input};
ProgramNodeBuilder builder;
Parser parser;

parser.Parse (scanner, builder);

RISCCodeGenerator generator (output) ;
ProgramNode* parseTree = buillder.GetRootNodel();
parseTree~->Traverse (generator) ;

Known Uses

1 Inthe ET++ application framework [WGM88] , an application can have built-
in browsing tools for inspecting its objects at run-time. These browsing tools
are implemented in a separate subsystem that includes a Facade class called
"ProgrammingEnvironment."

2 The Choices operating system [CIRM93 ] uses facades to compose many
frameworks into one . The key abstractions in Choice s are processes , storage,
and address spaces

3. The virtual memory framework has Domain as its facade



Software Architecture and Design Patterns (18CS731)

Process Domain

Add(Memory, Address)
< Remove(Memory)

e Protect{Memory, Protection)
RepairFault()
AddressTranslation o MemoryObject
FindMemory(Address) BulldCache() MemoryObjectCache
| Twol.evelPageTable PersistentStore PagedMemoryObjectCache

5 4
EJggr-

The main operations on Domain support are

» adding a memory object at a particular address,
» removing a memory object, and
> handling a page fault.
The virtual memory subsystem uses the following components internally:

» MemoryObject represents a data store.

» MemoryObjectCache caches the data of MemoryObjects in physical memory.
MemoryObjectCache is actually a Strategy that localizes the caching policy.

» AddressTranslation encapsulates the address translation hardware.

Related patterns:

1. Abstract Factory

> It can be used with Facade to provide an interface for creating subsystem objects
in a subsystem-independent way.

» Abstract Factory can also be used as an alternative to Facade to hide platform-
specific classes.

2. Mediator

» Mediator is similar to Facade in that it abstracts functionality of existing classes.

» However, Mediator's purpose is to abstract arbitrary communication between
colleague objects, often centralizing functionality that doesn't belong in any one
of them.

» In contrast, a facade merely abstracts the interface to subsystem objects to make
them easier to use; it doesn't define new functionality, and subsystem classes
don't know about it.

3. Usually only one Facade object is required. Thus Facade objects are often Singletons.



Software Architecture and Design Patterns

(18CS731)

Intent

FLYWEIGHT (Object Structure)

Use sharing to support large numbers of fine-grained objects efficiently

Motivation

v Most document editor implementations have text formatting and editing.

v Object-oriented document editors typically use objects to represent embedded
elements like tables and figures.

v’ Characters and embedded elements could then be treated uniformly with respect
to how they are drawn and formatted.

v" The application could be extended to support new character sets without
disturbing other functionality.

v The following diagram shows how a document editor can use objects to

>itidadi: 138/

represent characters.

character
~ objects

row
objects

column
: b object
The drawback of such a design is its cost.

Even moderate-sized documents may require hundreds of thousands of
character objects, which will consume lots of memory and may incur
unacceptable run-time overhead.

The Flyweight pattern describes how to share objects to allow their use at fine
granularities without prohibitive cost.

A flyweight is a shared object that can be used in multiple contexts
simultaneously.




Software Architecture and Design Patterns (18CS731)

v The flyweight acts as an independent object in each context.
v" The key concept here is the distinction between intrinsic and extrinsic state.
= Intrinsic state is stored in the flyweight; it consists of information that's
independent of the flyweight's context, thereby making it sharable.
= Extrinsic state depends on and varies with the flyweight's context and
therefore can't be shared.
v' Client objects are responsible for passing extrinsic state to the flyweight when
it needs it.
v For example,
= adocument editor can create a flyweight for each letter of thealphabet.
= Each flyweight stores a character code , but its coordinate position in the
document and its typographic style can be determined from the text
layout algorithms and formatting commands in effect wherever the
character appears.
v The character code is intrinsic state, while the other information is extrinsic.
v' Logically there is an object for every occurrence of a given character in the
document:

column

v’ Each occurrence of a particular character object refers to the same instance in the shared
pool of flyweight objects:



Software Architecture and Design Patterns (18CS731)

column
D o N N TN '/' ” ” NN AN
o0 )\ y y M A }"‘ H\ > JL 1 ,L 1 }..'
d g A XdXk)X1)Xm
o Q nlviwilx z
SN—" ~S~——" flyweight pool
The class structure for these objects is shown next.
44 Glyph L<
Draw(Context)
Intersects{Point, Context)
l | |
~—< Row Character Column OJ
chilaren children
Draw(Context) Draw(Context) Draw(Context)
Intersects(Point, Context) Intersects(Point, Context) Intersects(Point, Context)
charc

v Glyph is the abstract class for graphical objects , some of which may be flyweights.

v Operations that may depend on extrinsic state have it passed to them as a parameter.
For example, Draw and Intersects must know which context the glyph is in before they
can do their job.

Applicability: Apply flyweight pattern when all of the following are true:

1. An application uses a large number of objects.
2. Storage costs are high because of the sheer quantity of objects.



Software Architecture and Design Patterns (18CS731)

Most object state can be made extrinsic.
4. Many groups of objects may be replaced by relatively few shared objects once

extrinsic state is removed.
5. The application doesn’t depend upon object identity

Structure:



Software Architecture and Design Patterns

(18CS731)

The structure of flyweight pattern is shown below:

FlywelghtF Y — J Flywwight
GetFlyweight(key) ? Operation{extrinsicState)
it (yweight{key] exists
return existing LN
; croa(!o new flyweight;
add it 1o pool of "ywwﬂs 3
) retum the new flyweight:
Operation{extrinsicState) Operation{extrinsicState)
intrinsicState allState

The following object diagram shows how flyweights are shared:

=

=)

ﬂ'/t;;-lg'ﬂ
pool

¥

i

(aFlyweightFactory )

Y

\_flyweights intrinsicState

J

Jl‘km

Participants

1. Flyweight (Glyph) - declares an interface through which flyweights can receive

and act on extrinsic state.

2. ConcreteFlyweight(Character): Implements the Flyweights interface and adds
storage for intrinsic state, if any. A ConcreteFlyweight object must be sharable

3. UnsharedConcreteFlyweight(Row,column): Not all Flyweight subclasses need
to be shared. The Flyweight interface enables sharing, it doesn’t enforce it.

4. FlyweightFactory: Creates and manages flyweight objects. Ensures that

flyweights are shared properly.

5. Client: Maintains a reference to flyweight(s). Computes or stores the extrinsic

state of flyweight(s).




Software Architecture and Design Patterns (18CS731)

Collaborations:

v/ State that a flyweight needs to function must be characterized as either intrinsic orextrinsic.
= Intrinsic state is stored in the ConcreteFlyweight object;
= extrinsic state is stored or computed by Client objects. Clients pass this state tothe
flyweight when they invoke its operations.

v' Clients should not instantiate ConcreteFlyweights directly. Clients must obtain
ConcreteFlyweight objects exclusively from the FlyweightFactory object to ensure they are
shared properly.

Consequences:

Flyweights may introduce run-time costs associated with transferring, finding, and/or computing
extrinsic state, especially if it was formerly stored as intrinsic state.

However, such costs are offset by space savings, which increase as more flyweights are shared.

Storage savings are a function of several factors:

» The reduction in the total number of instances that comes from sharing
» The amount of intrinsic state per object
» Whether extrinsic state is computed or stored.

Implementation: Following issues must be considered while implementing flyweight pattern:

1. Removing extrinsic state. The pattern's applicability is determined largely by how easy it is to
identify extrinsic state and remove it from shared objects. Removing extrinsic state won'thelp reduce
storage costs if there are as many different kinds of extrinsic state as there are objects before sharing.

2. Managing shared objects. Because objects are shared, clients shouldn't instantiate them directly.
FlyweightFactory lets clients locate a particular flyweight. FlyweightFactory objects often use an
associative store to let clients look up flyweights of interest.

Sample Code

Returning to our document formatter example, we can define a Glyph base class for flyweight
graphical objects. Logically, glyphs are Composite that have graphical attributes and can draw
themselves. Here we focus on just the font attribute, but the same approach can be used for anyother
graphical attributes a glyph might have.



Software Architecture and Design Patterns (18CS731)

class Glyph {
public:
virtual “Glyphi() ;

virtual void Draw (Window®*, GlyphContext&) ;

virtual void SetFont(Font*, GlyphContext&) ;
virtual Font* GetFont (ClyphContext&) ;

virtual void First (GlyphContext&) ;
virtual wvoid Next (GlyphContext&) ;
virtual bool IsDone (GlyphContexts) ;
virtual Glyph* Current (GlyphContext&) ;

virtual void Insert (Glyph*, GlyphContext&) ;
virtual void Remove (GlyphContexté&) :
protected:
Glyphi();
X

The Character subclass just stores a character code:

class Character : public Glyph {
public:
Character (char) ;

virtual void Draw(Window*, GlyphContext&);
private:

char charcode;
)3

Glyph's child iteration and manipulation operations must update the GlyphContext whenever
they're used.

class GlyphContext {
public:
GlyphContext () ;
virtual “GlyphContext();

virtual void Next {(int step = 1);
virtual void Insert(int quantity = 1);

virtual Font* GetFont();

virtual void SetFont (Font*, int span = 1);
"Sprivate: age: 11

int _index;

BTree* _fonts;



Software Architecture and Design Patterns (18CS731)

» GlyphContext must be kept informed of the current position in the glyph structure
during traversal.

» GlyphContext : : Next increments index as the traversal proceeds

» GlyphContext : : GetFont uses the index as a key into a BTree structure that stores the
glyph-to-font mapping.

» The BTree structure for font information might look like

| Times 24 | | Times—italic 12| | Times 12 12 | | Courier 24 |

Known Uses

1. The concept of flyweight objects was first describe d and explore d as a design
technique in Interviews 3.0. Its developers built a powerful document editor called Doc
as a proof of concept.

2. ET++[WGMS88 ] uses flyweights to support look-and-feel independence.The look-and-
feel standard affects the layout of user interface elements (e.g., scroll bars, buttons,
menus—known collectively as "widgets” ) and their decoration s (e.g., shadows,
beveling).

3. The Layout objects are created and managed by Look objects. The Look class is an
Abstract Factory that retrieves a specific Layout object with operations like
GetButtonLayout, GetMenuBarLayout, and so forth .

Related patterns

1 The Flyweight pattern is often combined with the Composite pattern to implement a
logically hierarchical structure in terms of a directed-acyclic graph with shared leaf
nodes.

2 It's often best to implement State and Strategy objects as flyweights.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Proxy Pattern(Object Structure)
Intent: To provide a surrogate or placeholder for another object to control access to it.
Also knows as: Surrogate
Motivation

v Consider a document editor that can embed graphical objects in a document.

v Some graphical objects, like large raster images, can be expensive to create.

v But opening a document should be fast, so we should avoid creating all the expensive
objects at once when the document is opened.

v This isn't necessary anyway, because not all of these objects will be visible in the
document at the same time.

v These constraints would suggest creating each expensive object on demand, which in
this case occurs when an image becomes visible.

+ But what do we put in the document in place of the image ?
4+ And how can we hide the fact that the image is created on demand so that we don't
complicate the editor's implementation?

This optimization shouldn't impact the rendering and formatting code , for example. The
solution is to use another object, an image proxy, that acts as a stand-in for the real image. The
proxy acts just like the image and takes care of instantiating it when it's required

e s
e { } _____ {........,. Y

fleName @ ----
data )

L in memory J [ on disk ———J

v The image proxy creates the real image only when the document editor asks it to display
itself by invoking its Draw operation.
v’ The proxy forwards subsequent requests directly to the image.
v It must therefore keep a reference to the image after creating it.
e Let's assume that images are stored in separate files .
e Inthis case we can use the file name as the reference to the real object.
e The proxy also stores its extent, that is, its width and height.
e Theextent lets the proxy respond to requests for its size from the formatter without actually
instantiating the image.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

The following class diagram illustrates this example in more detail.

DocumentEditor W
Draw()
GetExtent()
Store()
Load()
Image - e ImageProxy if (image == 0) { N
‘ ’ image = Loadimage(fileName);
Draw() mage| Draw() Orbrevmssenesns - HY
GetExtent() GelExtent() O -~~~ -
Store() Store() ' ' o ]
' | ==
Load() Load() A 4 )3}%"6 oS,
imagelmp fileName retum image->GetExtent();
extent extent }

Applicability: Proxy pattern is applicable when:
1.A remote proxy provides a local representative for an object in a different address space.
2.A virtual proxy creates expensive objects on demand.

3.A protection proxy controls access to the original object. Protection proxies are useful when
objects should have different access rights.

4. A smart reference is a replacement for a bare pointer that performs additional actions when
an object is accessed.

» counting the number of references to the real object so that it can be freed automatically
when there are no more references (also called smart pointers [Ede92]).

» loading a persistent object into memory when it's first referenced.

» checking that the real object is locked before it's accessed to ensure that no other object
can change it.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Structure
»| Subject
Request()
RealSubject reaiSubject Proxy
Request() Request() O-f--~==---~ realSubject->Request();

Here's a possible object diagram of a proxy structure at run-time:

(ucuom ) ~N
(Lsubject o N :::;’:Lm - _ ( aRealSubject )

& )

Participants: The participants in proxy pattern are:

1. Proxy (Image Proxy): Maintains a reference that lets the proxy access the real subject.
Provides an interface identical to Subject so that the Proxy can be substituted for the
real subject. Controls access to the real subject.
other responsibilities depend on the kind of proxy:

a) remote proxies are responsible for encoding a request

b) virtual proxies may cache additional information about the real subject so that
they can postpone accessing it.

c) protection proxies check that the caller has the access permissions required to
perform a request.

2. Subject(Graphics): Defines the common interface for RealSubject and Proxy so that a
Proxy can be used anywhere a RealSubject is expected.

3. RealSubject(Image): Defines the real object that the proxy represents.

Collaborations

* Proxy forwards requests to RealSubject when appropriate, depending on the kind of proxy.

Consequences: The Proxy pattern introduces a level of indirection when accessing an object.
The additional indirection has many uses, depending on the kind of proxy:

1. A remote proxy can hide the fact that an object resides in a different address space.

2. A virtual proxy can perform optimizations such as creating an object on demand.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

3. Both protection proxies and smart references allow additional housekeeping tasks when an
object is accessed.

Implementation: The Proxy pattern can exploit the following language features:

1. Overloading the member access operator in C++: C++ supports overloading operator->, the
member access operator. Overloading this operator lets you perform additional work whenever
an object is dereferenced.

2. Using doesNotUnderstand in Smalltalk: Smalltalk provides a hook that you can use to
support automatic forwarding of requests. Smalltalk calls doesNotUnderstand: aMessage when
a client sends a message to a receiver that has no corresponding method. The Proxy class can
redefine doesNotUnderstand so that the message is forwarded to its subject.

3. Proxy doesn't always have to know the type of real subject: If a Proxy class can deal with
its subject solely through an abstract interface, then there's no need to make a Proxy class for
each RealSubject class; the proxy can deal with all RealSubject classes uniformly. But if
Proxies are going to instantiate RealSubjects (such as in a virtual proxy), then they have to
know the concrete class.

Sample Code
1. A virtual proxy. The Graphic class defines the interface for graphical objects:
class Graphic {

public:
virtual “Graphic();

virtual void Draw(const Point& at) = 0;
virtual void HandleMouse(Event& event) = 0;

virtual const Point& GetExtent() 0;

I

virtual void Load(istream& from) = 0;
virtual void Save(cstreamk to) = 0;
protected:
Graphic();
}:
The Image class implements the Graphic interface to display image files. Image overrides
HandleMouse to let users resize the image interactively.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

class Image : public Graphic (

public:
Image (const char* file); // lcads image from a file
virtual “Image():;

virtual void Draw(const Point& at);
virtual void HandleMouse (Event& event):;

virtual const Point& GetExtent():;

virtual void Load(istream& from);
virtual void Save(ostream& to);
private:
I wws
}:

ImageProxy has the same interface as Image:

class ImageProxy : public Graphic {
public:
ImageProxy(const char* imageFile);
virtual “ImageProxy():;

virtual void Draw(const Point& at);
virtual void HandleMouse (Event& event);

virtual const Point& GetExtent();

virtual void Load(istream& from);
virtual void Save(ostreamk& to);
protected:
Image* GetImage();
private:
Image* _image;
Point _extent;
char* _fileName;
}i

7™ Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

The constructor save s a local copy of the name of the file that stores the image, and it
initializes -extent and -image:

ImageProxy: : ImageProxy (const char* fileName) ({
_fileName = strdup(fileName) ;
_extent = Point::Zero;

// don’t know extent yet
_image = 0;

Image* ImageProxy::GetImage() {
if (_image == 0) {
_image = new Image(_fileName);

}
return _image;
}

The implementation of GetExtent returns the cache d extent if possible ; otherwise the image
is loaded from the file.

const Point& ImageProxy::GetExtent () {
if (_extent == Point::Zero) {
_extent = GetImage()->GetExtent();
)

return _extent;

void ImageProxy::Draw (const Point& at) {
CetImage()~->Draw(atr);
)

void ImageProxy::HandleMouse (Event& event) {

GetImage () ->HandleMouse (event) ;
}

The Save operation saves the cache d image extent and the image file name to
a stream. Load retrieves this information and initializes the corresponding members.

7™ Semester, Dept of CSE Page : 11



Software Architecture and Design Patterns (18CS731)

void ImageProxy::Save (ostreamk to) ({
Lo << _extent << _fileName;

void TmageProxy::Load (istream& from) ({
from >> _extent >> _fileName;

Finally, suppose we have a class TextDocument that can contain Graphic objects:

class TextDocument
public:
TextDocument () ;

void Insert (Graphic*);
//

L
i

We can insert an ImageProxy into a text document like this:

TextDocument* text = new TextDocument;
/7
text->Insert (new ImageProxy ("anImageFileName"));

Known Uses

1. The virtual proxy example in the Motivation section is from the ET++ text building
block classes.

2. NEXTSTEP [Add94 ] uses proxies (instances of class NXProxy) as local
representatives for objects that may be distributed.

3. McCullough [McC87 ] discusses using proxies in Smalltalk to access remote objects.

4. Pascoe [Pas86 ] describes how to provide side-effects on method calls and access
control with "Encapsulators.”

Related patterns:

1. An adapter provides a different interface to the object it adapts. In contrast, a proxy
provides the same interface as its subject. However, a proxy used for access protection
might refuse to perform an operation that the subject will perform, so its interface may
be effectively a subset of the subject's.

2. Although decorators can have similar implementations as proxies, decorators have a
different purpose. A decorator adds one or more responsibilities to an object, whereas a
proxy controls access to an object.

Software Architecture and Design Patterns 18CS731

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns Madiile 2 Rehaviaral (18CS731)

Patterns

Behavioral patterns are concerned with algorithms and the assignment of responsibilities between
objects. Behavioral patterns describe not just patterns of objects or classes but also the patterns of
communication between them. These patterns characterize complex control flow that's difficult to
follow at run-time.

Behavioral class patterns use inheritance to distribute behavior between classes. Behavioral object
patterns use object composition rather than inheritance. Some describe how a group of peer objects

cooperate toper form a task that no single object can carry out by itself.

Chain of Responsibility

Intent
Avoid coupling the sender of a request to its receiver by giving more than one object a

chance to handle the request. Chain the receiving objects and pass the request along the chain until

an object handles it.

Motivation
Consider a context-sensitive help facility for a graphical user interface. The user can obtain

help information on any part of the interface just by clicking on it. The help that's provided depends
on the part of the interface that's selected and its context.

For example, a button widget in a dialog box might have different help information than a similar
button in the main window. If no specific help information exists for that part of the interface, then
the help system should display a more general help message about the immediate context the dialog
box as a whole.

The problem here is that the object that ultimately provides the help isn't known explicitly to the
object that initiates the help request. What we need is a way to decouple the button that initiates the
help request from the objects that might provide help information. The Chain of Responsibility
pattern defines how that happens.

The idea of this pattern is to decouple senders and receivers by giving multiple objects a chance to

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁV@!’ﬁ\ﬁgng%sft‘%ﬁgg&gl Regl!'gp IEgEtlegrrg%anrnc 12CS721

handle a request. The request gets passed along a chain ofobjects until one of them handles it.

{( aBavaDialog B

|.‘_ handler - —.__‘.L_ — -
(" aPrintBution N —_—— — =" anApplication |

I il - B handlar

k" - _\71_ _‘—\—.-I/- aPrintDialog “\-L_____-'-"HFF"L"—"J
P X . handler e )
{ anDKButtan o —_—
[ naneiar -

The first object in the chain receives the request and either handles it or forwards it to the next
candidate on the chain, which does like wise. The object that made the request has no explicit

knowledge of who will handle it—we say titesemuestplicit receiver.

Let's assume the user clicks for help on a button widget marked "Print." The button is contained in
an instance of PrintDialog, which knows the application object it belongs to.The following

interaction diagram illustrates how the helprequest gets forwarded along the chain:

aPrintButton aPrintDialog anApplication

HandleHelp()

HandleHelp()

In this case, neither aPrintButton nor aPrintDialog handles the request; it stops at anApplication,
which can handle it or ignore it.The client that issued the request has no direct reference to the object
that ultimately fulfills it.

To forward the request along the chain, and to ensure receivers remain implicit, each object on the
chain shares a common interface for handling requests and foraccessing its successor on the chain. For
example, the help system might define a HelpHandler classwith a corresponding HandleHelp
operation. HelpHandler can be theparent class for candidate object classes, or it can be defined as

amixin class. Then classes that want to handle help requests can makeHelpHandler a parent:

Painrecilass

Halptarraler

m  MHarrdiaieod) o | handler -H.'u-l-!l-.-H-"Ial?EI

Application Wil t

| | .
it can handle =)
| Dinlog | Buittain St |u||.-c{_|
bl
HarileHasipdy o Hanciber: - anciiai-aeigsg)
H

Showil-elp()

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]l%Ert‘ldﬁgnaﬁqgl Regl!'g'p IEE'H%rg%anrnc 12CS721

The Button, Dialog, and Application classes use HelpHandler operations to handle help requests.

HelpHandler's HandleHelp operation forwards the request to the successor by default. Subclasses can
override thisoperation to provide help under the right circumstances; otherwisethey can use the
default implementation to forward the request.
Applicability
Use Chain of Responsibility when
« More than one object may handle a request, and the handler isn't knowna priori. The
handler should be ascertained automatically.
« You want to issue a request to one of several objects withoutspecifying the receiver
explicitly.
« The set of objects that can handle a request should be specifieddynamically.

LA e A B |
| CElisnrat | Pl e e
F RS I o e

| Concrete R mmo e | o retes sl lese 2 |

Structure

sl e i wtd ) Husmails e ousstis

A typical object structure might look like this:

-
aCliant
__( aConcreteHandler w
kal-lam}ler - | aConcreteHa ndlerw
- —k SUCCess0r L _;"

SLCCESSOT

Participants
. Handler (HelpHandler)

o Defines an interface for handling requests.
o (Optional) implements the successor link.
ConcreteHandler (PrintButton, PrintDialog)
Handles requests it is responsible for.
o Can access its successor.
o If the ConcreteHandler can handle the request, it does so; otherwise it forwards the request to its

o

SUCCESSOr.

« Client
o Initiates the request to a ConcreteHandler object on the chain.

Collaborations
« When a client issues a request, the request propagates along the chainuntil a ConcreteHandler

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]I%Ert‘ldﬁgnaﬁqgl Regl!'gp Rg{tl%rg%nffnrnc 12CS721

object takes responsibility for handling it.

Consequences
Chain of Responsibility has the following benefits and liabilities:

1. Reduced coupling.The pattern frees an object from knowing which other object handles a
request. An object only has to know that a request will be handled" appropriately.” Both the receiver
and the sender have no explicit knowledge of each other, and an object in the chain doesn't havetoknow

about the chain's structure.

2. Added flexibility in assigning responsibilities to objects.Chain Besponsibility gives you added

flexibility in distributing responsibilities among objects. You can add or change responsibilities for

handling a request by adding to or otherwise changing the chain at run-time. You can combine this
subviflassing to specialize handlers statically.

3. Receipt isn't guaranteed.Since a request has no explicit receiver, there'sno guaranteeit'll be

handled—the request can fall off the end of the chain without ever being handled. A request can

also go unhandled whenthe chain is not configured properly.

Potential Drawbacks:

» Client can’t explicitly specify who handles a request

> No guarantee of request being handled (request falls off end of chain)
Implementation

Here are implementation issues to consider in Chain of Responsibility:
1. Implementing the successor chain.There are two possible ways to implement the successor

chain:
a. Define new links (usually in the Handler, but ConcreteHandlerscould define them instead).
b. Use existing links.

Our examples so far define new links, but often you can use existing object references to form the
successor chain. For example, parent references in a part-whole hierarchy can define a part's
successor. Awidget structure might already have such links.
Using existing links works well when the links support the chain you need. It saves you from
defining links explicitly and it saves space. But if the structure doesn't reflect the chain of
responsibility your application requires, then you'll have to define redundant links.

2. Connecting successors.If there are no preexisting references for defining a chain, then we will
introduce them ourself. In that case, the Handler not only defines the interface for the requests but

usually maintains the successor as well. That lets the handler provide a default implementation of

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]l%Ert‘ldﬁgnaﬁqgl Regl!'g'p IEE'H%rg%anrnc 12CS721

HandleRequest that forwards the request to the successor. If a ConcreteHandler subclass isn't

interested in the request, it doesn't have to override the forwarding operation, since its default
implementation forwards unconditionally.

Here's a HelpHandler base class that maintains a successor link:
Class HelpHandler {
Public:
HelpHandler (HelpHandler™* s):
_successor(s) { }
Virtual void HandleHelp ();
Private:
HelpHandler* _successor;

¥
Void HelpHandler::HandleHelp ()
{

if (_successor)

{

_successor->HandleHelp ();

1}
3. Representing requests: Different options are available for representing requests. In the simplest

form, the request is a hard-coded operation invocation, as in the case of HandleHelp. This is
convenient and safe, but you can forward only the fixed set of requests that the Handler class defines
An alternative is to use a single handler function that takes a request code as parameter.This
approach is more flexible, but it requires conditional statements for dispatching the request based
on its code. Moreover, there's no type-safe way to pass parameters, so they must be packed and

unpacked manually.Obviously this is less safe than invoking an operation directly.

To address the parameter-passing problem, we can use separate request objects that bundle request
parameters. A Request class can represent requests explicitly, and new kinds of requests can be
defined by subclassing. Subclasses can define different parameters.Handlers must know the kind of
request to access these parameters.

To identify the request, Request can define an access or function that returns an identifier for the
class. Alternatively, the receiver can use run-time type information if the implementation languages
supports it.Here is a sketch of a dispatch function that uses request objects to identify requests.A Get

Kind operation defined in the base Request class identifies the kind of request:

Void Handler::HandleRequest (Request™ theRequest)
{

Switch (theRequest->GetKind ())

{

Case Help:

/I cast argument to appropriate type
HandleHelp((HelpRequest*)theRequest);break;

Case Print:

HandlePrint ((PrintRequest*) theRequest);

7" Semester, Dept of CSE Page: 11



Softwarp Architectyre and Design Patterns .. (8c8731)
no ”
break;
default:

1
Subclasses can extend the dispatch by overridingHandleRequest. The subclass handles only the

requests in which it's interested; other requests are forwarded to the parent class. In this way,
subclasses effectively extend the HandleRequest operation.

4. Automatic forwarding in Smalltalk.You can use the doesNotUnderstand mechanism in
Smalltalk to forward requests. Messages that have no corresponding methods are trapped in the
implementation of doesNotUnderstand, which can be overridden to forward the message to anobject's
successor.Thus it isn't necessary to implement forwarding manually; the classhandles only the

request in which it's interested and it relies on doesNotUnderstand to forward all others.

Sample Code
The following example illustrates how a chain of responsibility can handle requests for an on-line

help system. The help request is an explicit operation. We'll use existing parent references in the
widget hierarchy to propagate requests between widgets in the chain, and we'll define a reference in
the Handler class to propagate help requests between non widgets in the chain.

The HelpHandler class defines the interface for handlinghelp requests. It maintains a help topic and
keeps a reference to its successor on the chain of help handlers.The key operation is HandleHelp,
which subclassesoverride. HasHelp is a convenience operation for checking whether there is an
associated help topic.

Typedef int Topic;

const Topic NO_HELP_TOPIC = -1;

class HelpHandler {public:
HelpHandler(HelpHandler*=0,Topic= NO_HELP_TOPIC);
virtual bool HasHelp();

virtual void SetHandler(HelpHandler*, Topic);virtual void
HandleHelp();

private:

HelpHandler* _successor;

Topic _topic;

b
HelpHandler::HelpHandler (HelpHandler* h, Topic t) : _successor(h), _topic(t)

{}
BoolHelpHandler::HasHelp()
{return_topic!l= NO_HELP_TOPIC;

}
void HelpHandler::HandleHelp ()
{if (_successor '=0)

{

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]l%Ert‘ldﬁgnaﬁqgl Regl!'g'p IEE'Etlgrg%anrnc 12CS721

successor->HandleHelp(); -
3}
All widgets are subclasses of the Widget abstract class.Widget is a subclass of HelpHandler, since

alluser interface elements can have help associated with them.

Class Widget: public HelpHandler {

Protected:

Widget (Widget* parent, Topic t = NO_HELP_TOPIC);private:
Widget* _parent;

¥

Widget::Widget (Widget* w, Topic t);
HelpHandler (w, t) {

_parent = w;

}
Known Uses

Several class libraries use the Chain of Responsibility pattern to handle user events. They use

different names for the Handler class, but the idea is the same:

« When the user clicks the mouse or presses akey, an event gets generated and passed along the
chain.MacApp [App89] and ET++ [WGMS88] call it "EventHandler,"Symantec'sTCL library
[Sym93Db] calls it "Bureaucrat," andNeXT's AppKit [Add94] uses thename "Responder.”

« ET++ uses Chain of Responsibility to handle graphical update.

Related Patterns

Chain of Responsibility is often applied in conjunction with Composite .There a component's parent
can act as its successor.

7" Semester, Dept of CSE Page: 11



(18CS731)

SOﬁv@!’E’\ﬁggrn]l%Ert‘ldﬁgnaﬁqgl Regl!'g'p IEE'Etlgrg%anrnc 12<S721
Command
Intent

Encapsulate a request as an object, there by letting you parameterize clients with different requests,

queue or log requests, and support undoable operations.

Also Known As
Action, Transaction

Motivation

Sometimes it's necessary to issue requests to objects without knowing anything about the operation
being requested or the receiver of the request.

For example, user interface toolkits include objects like buttons and menus that carry out a request
in response to user input.But the toolkit can't implement the request explicitly in the button or menu,
because only applications that use the toolkit know what should be done on which object. As toolkit
designers we have no way of knowing the receiver of the request or the operations that will carry it

out.

The Command pattern lets toolkit objects make requests of unspecified application objects by turning
the request itself into an object. This object can be stored and passed around like other objects. The
key to this pattern is an abstract Command class, which declares an interface for executing
operations. In the simplest form this interface includes an abstract Execute operation. Concrete
Command subclasses specify a receiver-action pair by storing the receiver as an instance variable and
by implementing Execute to invoke the request. The receiver has the knowledge required to carry out

the request.

Application {}—mﬂ—m@—h Command

command

Add{Daocument) Add{Menultem) Clicked() ¢ Executel)
1
’ A
Documgnt command-=Exescutel) \D\/ T o

Opent)
Closa()
Cut{y

Copy()
Paste()

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]l%Ert‘ldﬁgnaﬁqgl Regl!'g'p IEE'H%rg%anrnc 12CS721

Menus can be implemented easily with Command objects. Each choice in a Menu is an instance of a
Menultem class. An Application class createsthese menus and their menu items along with the rest
of the user interface.The Application class also keeps track of Document objects that a user
hasopened.

The application configures each Menultem with an instance of a concrete Commandsubclass. When
the user selects a Menultem, theMenultem calls Execute on its command, and Execute carries out
theoperation. Menultems don't know which subclass of Command they use.Command subclasses

store the receiver of the request and invoke one or more operations on the receiver.

Command
Execule()
Document /J\
Open() R | Bl
Close()
. q‘.“"- docurnent
Cutl) PasteCommand
Coapyl}
Paste() Exegcute() G-——---—-q-———-——-- document->Paste() \ﬁ*|

OpenCommand's Execute operation is different: it prompts the user for a document name, creates a
corresponding Document object, adds the document to the receiving application, and opens the

document.

Command

Lxwcute()

Y
Application i
AdU(OBeUmant) 5 apphcation

Lxmcuta() H
AskUisor() |
-

OpenCommand l

Sometimes a Menultem needs to execute a sequence of commands.For example; a Menultem for

Cremrrrrrearracd

£ marerir e )

X

_momrnance ‘
AL T W R R T r. =

[SETETT TRT
T
i

Tt Call a2 4oy Al
[EEEl IR L TIFE] &)

centering a page at normal size could be constructed from a CenterDocumentCommand object and

el 'I:'-l

aNormalSize Command object. Because it's common to string commands together in this way, we
can define a MacroCommand class to allow aMenultem to execute an open-ended number of

commands. Macro Command is a concrete Command subclass that simply executes a sequence

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁV@!’E\ﬁgng%EL&n@gﬂgl Regl!'g'p IEE'H%rg%anrnc 12CS721

ofCommands. MacroCommand has no explicit receiver, because the commandsit sequences define

their own receiver.

In each of these examples, notice how the Command pattern decouplesthe object that invokes the
operation from the one having theknowledge to perform it. This gives us a lot of flexibility
indesigning our user interfaceWe can replace commands dynamically, which would be useful for
implementing context-sensitive menus. We can also support command scripting by composing
commands into larger ones. All of this is possible because the object that issues request only needs to
knowhow to issue it; it doesn't need to know how the request will be carried out.

Applicability

Use the Command pattern when you want to
» Parameterize objects to perform actions.

» Specify, queue, and execute requests at different times.

» Support undo. The Command's Execute operation can store state for reversing its effects in

the command itself.

» Support logging changes

» Structure a system around high-level operations

Participants

Client Coerimartd

Exeniifef}

i
i

i

i Rocoiver

i

1

re3Oieer

Aotioniy ==n ConcrateCommand

I
H Es@ciilal) O--——=—== ———1 |{1|,":{1Ivl?ll---.uAlfl:IL)l'll::-lE‘\\|
i
[

slate

. Command
o Declares an interface for executing an operation.
« ConcreteCommand (PasteCommand, OpenCommand)
o Defines a binding between a Receiver object and an action.
o Implements Execute by invoking the corresponding operation(s) onReceiver.
« Client (Application)
o Creates a ConcreteCommand object and sets its receiver.
« Invoker (Menultem)
o asks the command to carry out the request.
. Receiver (Document, Application)
o knows how to perform the operations associated with carrying outa request. Any

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]l%Ert‘ldﬁgnaﬁqgl Regl!'g'p IEE'H%rg%anrnc 12CS721

class may serve as a Receiver.

Collaborations

« The client creates a ConcreteCommand object and specifies its receiver.

« An Invoker object stores the ConcreteCommand object.
. The following diagram shows the interactions between these objects.It illustrates how Command

decouples the invoker from the receiver (and the request it carries out).

A EscEirer Bl et A lormrmsand Aanlnvokarr

Consequences
The Command pattern has the following consequences:

1. Command decouples the object that invokes the operation from the one thatknows how to perform
it.

2. Commands are first-class objects. They can be manipulated and extended like any other object.

3. You can assemble commands into a composite command. An example is theMacroCommand

class described earlier

a. It's easy to add new Commands, because you don't have to changeexisting classes.

Implementation
Consider the following issues when implementing the Command pattern:
1. How intelligent should a command be?

A command can have a wide range of abilities. At one extreme it merely defines a binding between
a receiver and the actions that carryout the request. At the other extreme it implements everything
itselfwithout delegating to a receiver at all.

2. Supporting undo and redo.
Commands can support undo and redo capabilities if they provide a way to reverse their execution.
A ConcreteCommand class might need to store additional state to do so. This state can include
the Receiver object, which actually carries out operations inresponse to the request,

o the arguments to the operation performed on the receiver, and
o Any original values in the receiver that can changeas a result of handling the request. The

receiver must provideoperations that let the command return the receiver to its prior state.

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]l%Ert‘ldﬁgnaﬁqgl Regl!'g'p IEE'H%rg%anrnc 12CS721

3 Avoiding error accumulation in the undo process.

4 Errors can accumulate as commands are executed, unexecuted, and reexecuted repeatedly so that
an application's state eventually diverges from original values. It may be necessary therefore to store
more information in the command to ensure that objects are restored to their original state.

5 Using C++ templates.For commands that

(1) Aren’t undoable

(2) Don’t require arguments, we can use C++ templates to avoid creating a Command subclass

forevery kind of action and receiver.
Sample Code

The C++ code showed here sketches the implementation of the Command classesin the Motivation
section. We'll define OpenCommand,PasteCommand, and MacroCommand. First theabstract
Command class:

class Command

{

public:

virtual ~Command();
virtual void Execute() = 0;
protected:

Command();

j
Open Command opens a document whose name is supplied by theuser. An Open Command must be

passed an Application object in its constructor. Ask User is an implementation routine that prompts

the user for the name of the document to open.

class OpenCommand : public Command {
public:OpenCommand(Application*);

virtual void Execute(); protected:

virtual const char* AskUser();private:

Application* _application;

char* _response;

Y

OpenCommand::OpenCommand (Application* a) {
_application = a;

¥

Known Uses

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]l%Ert‘ldﬁgnaﬁqgl Regl!'g'p IEE'H%rg%anrnc 12CS721

» Perhapsthe first example of theCommand pattern appears in a paper by Lieberman[Lie85].

» MacApp [App89] popularizedthe notion of commands for implementing undoable
operations.

» ET++ [WGMB88], InterViews [LCI+92], andUnidraw [VL90] alsodefine classes that follow
theCommand pattern.

> InterViews define Action abstract class thatprovides command functionality. It also defines
an ActionCallbacktemplate, parameterized by action method that cans instantiate
commandsubclasses automatically.

» The THINK class library [Sym93b] also uses commands to support undoable actions.
Commands in THINK are called "Tasks

» Unidraw's command objects are unique in that they can behave likemessages.
» Coplien describes how to implement functors, objects thatare functions, in C++[Cop92].

Related Patterns

A Composite (183)can be used to implement MacroCommands.
A Memento (316)can keep state the command requires to undo its effect.

A command that must be copied before being placed on the historylist acts as aPrototype (133).

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]I%Ert‘ldﬁgnaﬁqgl Regl!'gp Rg{tl%rg%nffnrnc 12CS721

Interpreter

Intent
Given a language, define a represention for its grammar along with an interpreter that uses the

representation to interpret sentences in the language.

Motivation
If a particular kind of problem occurs often enough, then it might beworthwhileto express instances of

the problem as sentences in a simple language. Then you can build an interpreter that solves
theproblem by interpreting these sentences.

For example, searching for strings that match a pattern is a common problem. Regular expressions

are a standard  language for specifying patterns of strings. Rather than building custom algorithms

to match each pattern against strings, search algorithms could interpret a regular expression that

specifies a set of strings to match.

The Interpreter pattern describes how to define a grammar for simple languages, represent sentences

in the language, and interpret these sentences.

Example: the pattern describes how to define a grammar for regular expressions, represent a

particular regular expression, and how to interpret that regular expression.

Suppose the following grammar defines the regular expressions:

expression::= literal | alternation | sequence | repetition |
(" expression *)"

alternation::= expression ‘|" expression
sequence ::= expression ‘&' expression
repetition ::= expression "*'

literal::="a" | 'b" | 'c"|...{'a"|'b"|'c"|... }*
The symbol expression is the start symbol, and literalis a terminal symbol defining simple words.
The Interpreter pattern uses a class to represent each grammar rule.Symbols on the right-hand side
of the rule are instance variables of these classes. The grammar above is represented by five classes:
an abstract class Regular Expression and its four subclassesLiteralExpression,
AlternationExpression, SequenceExpression, and Repetition Expression. The last three classes

define variables that hold sub expressions.

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁV@!’E\ﬁgng%EL&n@gﬂgl Regl!'g'p IEE'H%rg%anrnc 12CS721

RegularExpression
interpreti) -
R . R axprassioni
LiteralExpression SequenceExpression e EXRTESSIONT |
- expressiong
Interprety) Interpret()
literal
| al Aativa
r_em{} RepetitionExprassion AlternationExprassion alternative
- alternatives
Interpret() Interpret()

Every regular expression defined by this grammar is represented by an abstract syntax tree made up
of instances of these classes. For example, the abstract syntax tree represents the regular expression
Traning & (dogs|cats)*

r--:.--q e T o — -'“'l

A e s R e L}
ot g e e et - l
L L i [ oo o e adoees ]
L edaniaiees A I reamemes _J
--nnﬁlrnrnnilniil::-lrl-lrnn.lll.l.nlﬂ-
walloorrsealecars 1
L L o 1 l
T BT e S e e T o BT :l [ 0 I i B S e e T T i :l
e Biagane- —

We can create an interpreter for these regular expressions by defining the Interpret operation on each
subclass of Regular Expression.Interpret takes as an argument the context in which to interpret the
expression. The context contains the input string and information on how much of it has been
matched so far. Each subclass of Regular Expression implements Interpret to match the next part of
the input string based on the current context

Applicability
Use the Interpreter pattern when there is a language to interpret, andyou canrepresent statements in

the language as abstract syntax trees.The Interpreterpattern works best when
o The grammar is simple.

«Efficiency is not a critical concern. Structure

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]l%Ert‘ldﬁgnaﬁqgl Regl!'g'p IEE'H%rg%anrnc 12CS721

Participants

L] '] b4 . N
\L'——" A Frme Frpwas D A o se we oy

FerleveparertfC o oarrifer b}

| /L\ |

TerminalExpraasicn MontarminalExpreaassicon [

Irybesrpres L oy Lesw L} Intarpreliioaniax)

AbstractExpression (RegularExpression)
o Declares an abstract Interpret operation that is common to all nodes in the abstract syntax tree.
« TerminalExpression (LiteralExpression)
o Implements an Interpret operation associated with terminal symbols in the grammar.

o aninstance is required for every terminal symbol in a sentence.
« NonterminalExpression (AlternationExpression,RepetitionExpression, SequenceExpressions)

o One such class is required for every rule R ::= R1 R2 ... Rn in the grammar.
o Maintains instance variables of type AbstractExpression for each of the symbols R1 through Rn.
o Implements an Interpret operation for nonterminal symbols in the grammar. Interpret typically

calls itself recursively on the variables representing R1 through Rn.

. Context
o Contains information that's global to the interpreter.
« Client

o

Builds (or is given) an abstract syntax tree representing a particular sentence in the language that
the grammar defines.

Invokes the Interpret operation.

o

Collaborations

. The client builds (or is given) the sentence as an abstract syntaxtree of NonterminalExpression
and TerminalExpression instances. Thenthe client initializes the context and invokes the
Interpretoperation.

« Each NonterminalExpression node defines Interpret in terms ofinterpret on each subexpression.
The Interpret operation of eachTerminalExpression defines the base case in the recursion.

« The Interpret operations at each node use the context tostore and access the state of the
interpreter.

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]I%Ert‘ldﬁgnaﬁqgl Regl!'gp Rg{tl%rg%nffnrnc 12CS721

Consequences
The Interpreter pattern has the following benefits and liabilities:

1. It's easy to change and extend the grammar.
2. Implementing the grammar is easy too.

3. Complex grammars are hard to maintain.
4

Adding new ways to interpret expressions.

Implementation
The following issues are specific to Interpreter:

1. Creating the abstract syntax tree.The Interpreter pattern doesn't explain how to create an
abstract syntax tree. In other words, it doesn't address parsing.The abstract syntax tree can be
created by a table-driven parser, by a hand-crafted parser, or directly by the client.

2. Defining the Interpret operation.You don't have to define the Interpret operation in the
expression classes. If it's common to create a new interpreter, then its better to use the Visitor
pattern to put Interpret in aseparate "visitor" object.

3. Sharing terminal symbols with the Flyweight pattern.Grammars whose sentences contain
many occurrences of a terminal symbol might benefit from sharing a single copy of that symbol.
Terminal nodes generally don't store information about their position in the abstract syntax tree.
Parent nodes pass them whatever context they need during interpretation. Hence there is a

distinction between shared state and passed-in state, and the Flyweight pattern applies.

Sample Code
Here are two examples.

» The first is a complete example in Small talk for checking whether a sequence matches a
regular expression.
» The second is a C++ program for evaluating Boolean expressions.
The regular expression matcher tests whether a string is in the language defined by the regular
expression. The regular expression is defined by the following grammar:

expression ::= literal | alternation | sequence | repetition |
‘(" expression ")’
alternation ::= expression ‘|" expression
sequence ::= expression '&' expression
repetition ::= expression ‘repeat’
literal ::="a" |'b"|'c"|...{'a"|'b"|'c"| ... }*

7" Semester, Dept of CSE Page: 11



Software Architecturs and Design Patterns oot
For example, the regular expression
(('dog " | "cat ") repeat & ‘weather') matches the input string ""dog dog cat weather™'.

To implement the matcher, we define the five classes The classSequence Expression has instance
variables expressionl and expression2 for its children in the abstract syntax tree. Alternation
Expression stores its alternatives in the instance variables alternativel and alternative2, while
Repetition  Expression holds the expression it repeats in itsrepetition instance
variable.LiteralExpression has a components instance variable that holds a list of. These represent

the literal string that must match the input sequence.

The match: operation implements an interpreter for the regular expression. Each of the classes
defining the abstract syntax tree implements this operation. It takes input State as an argument

representing the current stateof the matching process, having read part of the input string.

This current state is characterized by a set of input streams representing the set of inputs that the
regular expression could have accepted so far. The current state is most important to the repeat

operation.

Output state usually contains more states than its input state, because a RepetitionExpression can
match one, two, or many occurrences of repetition on the input state. The outputstates represent all
these possibilities, allowing subsequent elementsof the regular expression to decide which state is

the correct one.

Finally, the definition of match: forLiteralExpression tries to match its components against

eachpossible input stream. It keeps only those input streams that have amatch:

The nextAvailable: message advances the input stream. This is the only match: operation that
advances the stream.Notice how the state that's returned contains a copy of the inputstream, thereby
ensuring that matching a literal never changes theinput stream. This is important because each

alternative of anAlternationExpression should see identical copies ofthe input stream.

7" Semester, Dept of CSE Page: 11



. . (18CSs731)
SOﬁv@!’E’\ﬁggrn]I%Ert‘ldﬁgnaﬁqgl Regl!'gp Rg{tl%rg%nffnrnc 12CS721

Known Uses

» The Interpreter pattern is widely used in compilers implemented with object-oriented
languages, as the Smalltalk compilers are.

» SPECTalkuses the pattern to interpret descriptions of input fileformats [Sza92].

» The QOCA constraint-solving toolk it uses it to evaluate constraints [HHMV92].

Related Patterns

» Composite (183): The abstract syntax tree is an instance of the Composite pattern.
Flyweight (218) shows how to share terminal symbols within the abstract syntaxtree.

>
> lterator (289): The interpreter can use an Iterator to traverse the structure.
>

Visitor (366) canbe used to maintain the behavior in each node in the abstract syntaxtree in

one class.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Iterator

Intent

Provide a way to access the elements of an aggregate object sequentially without exposing its

underlying representation.
Also Known As
Cursor

Motivation

An aggregate object such as a list should give you a way to access its elements without exposing its
internal structure. Moreover, you might want to traverse the list in different ways, depending on
what you want to accomplish.

The key idea in this pattern is to take the responsibility for access and traversal out of the list object
and put it into an iterator object. The Iterator class defines an interface for accessing the list's
elements.An iterator object is responsible for keeping track of the current element; that is, it knows

which elements have been traversed already.

For example, a List class would call for a List Iterator with the following relationship between them:

fist

List hat Listiterator

Count() First{)

Append(Element) MNext()

Remowve(Element) IsDone()
Currentitarm()
index

Before you can instantiate Listlterator, you must supply the List to traverse.Once you have the List
Iterator instance, you can access the list's elements sequentially. The Current Item operation returns
the current element in the list, First initializes the current element tothe first element, Next advances
the current element to the nextelement, and Is Done tests whether we've advanced beyond the last

element—that is, we're finished with the traversal.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Notice that the iterator and the list are coupled and the client mustknow thatit is a list that's traversed as
opposed to some otheraggregate structure. Hence the client commits to a particularaggregate structure.
It would be better if we could change the aggregateclass without changing client code. We can do this

by generalizing the iterator concept to support polymorphic iteration.

We define an AbstractList class that provides a common interfacefor manipulating lists. Similarly, we
need an abstract Iteratorclass that defines a common iteration interface. Then we can defineconcrete
Iterator subclasses for the different list implementations.As a result, the iteration mechanism becomes

independent of concreteaggregate classes.

AbstractlList Iterator
Createltaratorf) First}
Countf) Mexti)
Appanditam) IsDane()
Hamove(Tteim ) Currantitemy)
List [~~~ mTmTTTT ™ Listiterator
SkipList [J - 7T TTTTTTTommoommmmmomom oo m e = skipListiterator

The remaining problem is how to create the iterator. Since we want to write code that's independent of
the concrete List subclasses, we cannot simply instantiate a specific class. Instead, we make the
listobjects responsible for creating their corresponding iterator. This requires an operation like

Createlterator through which clients request an iterator object.
Applicability

Use the Iterator pattern

. toaccess an aggregate object's contents without exposing its internal representation.

. tosupport multiple traversals of aggregate objects.
. to provide a uniform interface for traversing different aggregatestructures

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Structure

Aggregafe fterator

Createlferator]) First}

Mexti)
I=lormef)
Currentitemy)

8

'-! Concretelterator

ConcreteAggregate

Crealelteraton(} ¢
L

| rerurn new cnnmmelmrator(rh.g}ﬂ

Participants
« lterator

o Defines an interface for accessing and traversing elements.
« Concretelterator

o Implements the Iterator interface.

o Keeps track of the current position in the traversal of the aggregate.
« Aggregate
o Defines an interface for creating an Iterator object.
. ConcreteAggregate
o Implements the Iterator creation interface to return an instanceof the proper Concretelterator.

Collaborations
« A Concretelterator keeps track of the current object inthe aggregate and can compute the
succeeding object in thetraversal.

Consequences

The Iterator pattern has three important consequences:

1. It supports variations in the traversal of an aggregate.Complex aggregates may be traversed
in many ways. For example, codegeneration and semantic checking involve traversing parse
trees. Codegeneration may traverse the parse tree inorder or preorder.lterators makes it easy to
change the traversal algorithm.

2. Iterators simplify the Aggregate interface.lterator's traversal interface obviates the need for a
similarinterface in Aggregate, thereby simplifying the aggregate's interface.

3. More than one traversal can be pending on an aggregate.An iterator keepstrack of its own

traversal state. Therefore you canhave more than onetraversal in progress at once.

Implementation

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Iterator has many implementation variants and alternatives. Someimportant onesfollow. The trade-

offs often depend on thecontrol structures your language provides.

1. Who controls the iteration? A fundamental issue is deciding which partycontrols the iteration,the
iterator or the client that uses the iterator.When the clientcontrols the iteration, the iterator is called
an externaliterator, and when the iterator controls it, the iterator is aninternal iterator.Clients
that use anexternal iterator must advance the traversal and request the nextelement explicitly from
the iterator. In contrast, the client handsan internal iterator an operation to perform, and the iterator

applies that operation to every element in the aggregate.

2. External iterators are more flexible than internal iterators. It's easy to compare two
collections for equality with an external iterator, for example, but it's practically impossible with
internaliterators. Internal iterators are especially weak in a language likeC++ that does not provide
anonymous functions, closures, orcontinuations like Smalltalk and CLOS. But on the other

hand,internal iterators are easier to use, because they define the iterationlogic for you.

3. Who defines the traversal algorithm? The iterator is not the only place wherethe traversal
algorithm canbe defined. The aggregate might define thetraversal algorithm anduse the iterator to
store just the state of theiteration. We callthis kind of iterator a cursor, since it merely pointstothe
current position in the aggregate. A client will invoke the Nextoperation on the aggregate with the
cursor as an argument, and theNext operation will change the state of thecursor.

4. If the iterator is responsible for the traversal algorithm, then it'seasy to use different iteration
algorithms on the same aggregate, andit can also be easier to reuse the same algorithm on
differentaggregates. On the other hand, the traversal algorithm might need toaccess the private
variables of the aggregate. If so, putting thetraversal algorithm in the iterator violates the

encapsulation of theaggregate.

5. How robust is the iterator?It can be dangerous to modify an aggregate while you're traversing
it.If elements are added or deleted from the aggregate,you might end upaccessing an element twice
or missing it completely. A simplesolution is to copy the aggregate and traverse the copy, but
that'stoo expensive to do in general.

6. A robust iterator ensures that insertions and removalswon't interfere with traversal, and it

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

eidoes it without copying theaggregate. There are many ways to implement robust iterators.
Mostrely on registering the iterator with the aggregate. On insertion orremoval, the aggregate ther
adjusts the internal state of iteratorsit has produced, or it maintains information internally to

ensureproper traversal.

7. Kofler provides a good discussion of how robust iterators areimplemented in ET++ [Kof93].
Murray discusses theimplementation of robust iterators for the USL StandardComponents'List
class [Mur93].

g. Additional Iterator operations.The minimal interface to Iterator consists of the operations
First,Next, IsDone, and Currentltem.4Someadditional operations might prove useful. For example,
orderedaggregates can have a Previous operation that positions the iteratorto the previous element.
A SkipTo operation is useful for sorted orindexed collections. SkipTo positions the iterator to an
objectmatching specific criteria.

9. Using polymorphic iterators in C++.Polymorphic iterators have their cost. They require the iterator
object to be allocated dynamically by a factory method. Hence they should be used only when
there's a need for polymorphism. Otherwise use concrete iterators, which can be allocated on the

stack.

10. Iterators may have privileged access.An iterator can be viewed as an extension of the aggregate
that created it. The iterator and the aggregate are tightly coupled. We can express this close
relationship in C++ by making the iterator afriend of its aggregate. Then you don't need todefine

aggregate operations whose sole purpose is to let iteratorsimplement traversal efficiently.

11. Iterators for composites.External iterators can be difficult to implementover recursiveaggregate
structures like those in the Composite (183) pattern, because a position in the structure may span
many levels ofnested aggregates. Therefore an external iterator has to store a paththrough the
Composite to keep track of the current object. Sometimesit's easier just to use an internal iterator. It
can record thecurrent position simply by calling itself recursively, thereby storingthe path implicitly
in the call stack.

12. Null iterators.A Nulllterator is a degenerate iterator that's helpful for handling boundary conditions.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns

(18CS731)

2.

4.

By definition, a Nulllterator is always done with traversal; that is, its Is Done operation always

evaluates to true.Nulllterator can make traversing tree-structured aggregates (likeComposites) easier.

Sample Code
We'll look at the implementation of a simple List class.We'll show two Iterator

implementations, onefor traversing the List infront-to-back order, and another for traversing

back-to-front

. List and Iterator interfaces. First let's look at the part of the Listinterface that's relevant

toimplementing iterators. for the full interface.

template <class Item>class List {

public:

List(long size = DEFAULT_LIST_CAPACITY);long Count() const;

Item& Get(long index) const;

// .
5

Iterator subclass implementations.Listlterator is a subclass of Iterator.

template <class Item>

class Listlterator : public Iterator<Item> {public:
Listlterator(const List<Item>* aList);virtual void First();
virtual void Next();

virtual bool IsDone() const; virtual Item Currentltem() const;private:

const List<Item>* list;long _current;

b

Using the iterators.Let's assume we have a List of Employee objects,and we would like to print
all the contained employees. TheEmployee class supports this with a Prin toperation. To print
the list, we define a PrintEmployees operation that takes an iterator as an argument. It uses

the iteratorto traverse and print the list.

Avoiding commitment to a specific list implementation. Let's consider how a skiplist

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

variation of List would affectour iteration code. A SkipList subclass ofList must provide a
SkipListlterator thatimplements the Iterator interface. Internally, theSkipListlterator has to
keep more than just an index todo the iteration efficiently. But sinceSkipListlterator conforms
to thelterator interface, the PrintEmployees operationcan also be used when the employees
are stored in a SkipListobject.

5. Making sure iterators get deleted. To make life easier for clients,we'll provide an
IteratorPtr that acts as a proxy for aniterator. It takes care of cleaning up the Iterator
objectwhen it goes out of scope.

6. IteratorPtr is always allocated on thestack C++ automatically takes care of callingits
destructor, which deletes the real iterator.IteratorPtr overloads bothoperator-> andoperator*
in such a way that an IteratorPtr can betreated just like a pointer to an iterator. The members
oflteratorPtr are all implemented inline; thus they can incur nooverhead.

7. An internal Listlterator.As a final example, let's look at a possible implementation of
aninternal or passive Listlterator class. Here the iteratorcontrols the iteration and it applies

an operation to each element.

Known Uses

Iterators are common in object-oriented systems. Most collection class libraries offer iterators in one
form or another.

Example:
Booch components [Boo94], apopular collection class library. It provides both a fixed size and

dynamically growing implementation of aqueue..

Polymorphic iterators and the cleanup Proxy described earlier are provided by the ET++ container
classes [WGM88].

ObjectWindows 2.0 [Bor94] provides a class hierarchy ofiterators for containers. You can iterate
over different containertypes in the same way. The ObjectWindow iteration syntax relies

onoverloading the postincrement operator ++ to advance theiteration.

Related Patterns

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Composite (183):Iterators are often applied to recursive structures suchasComposites.

Factory Method (121):Polymorphic iterators rely on factory methods to instantiate theappropriate

Iterator subclass.

Memento (316) isoften used in conjunction with the Iterator pattern. An iteratorcan use a memento

to capture the state of an iteration. The iteratorstores the memento internally.

Mediat
or
Inte
nt

Define an object that encapsulates how a set of objects interact.Mediator promotesloose coupling by
keeping objects from referring toeach other explicitly, and it lets you vary their
interactionindependently.

Motivation

Object-oriented design encourages the distribution of behavioramong objects. Suchdistribution can
result in an object structurewith many connections between objects; in the worst case, every

objectends up knowing about every other.

As an example, consider the implementation of dialog boxes in agraphical userinterface. A dialog box

uses a window to present acollection of widgets such asbuttons, menus, and entry fields, asshown here:

B3] _Font Chooser |==i=]

The quick brown fox...
LU e/ centary school book N

avant garde <
ichicago
courier
helvetica

palatino
times roman
zapf dingbars

Weight Omedium ®bold © demibold

Slant Croman ®italic Goblique
Stze Cleondensed

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Often there are dependencies between the widgets in the dialog. Forexample, abutton gets disabled

when a certain entry field is empty.Selecting an entry ialist of choices called a list boxmight change the

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

contents of an entry field.Conversely, typing textinto the entry field might automatically select one or
morecorresponding entries in the list box. Once text appears in the entryfield, other buttons may
become enabled that let the user do somethingwith the text,such as changing or deleting the thing to

which it refers.

For example, FontDialogDirector can be the mediatorbetween the widgets in a dialog box. A
FontDialogDirector object knowsthe widgets in a dialog and coordinatestheir interaction. It acts as a

hub of communication for widgets:

alistBox

aClient p clirecior
aFcntDialngDifectorxﬁi
L L - -——_/)!

aButton
director -

r
anEntryField |

director

The following interaction diagram illustrates how the objects cooperate to handle a change in a list

Mediator Colleagues
aClient aFontDialogDirector aListBox anEntryField
u , |
SNowDIRIoOL)
|— 1 WidgetChanged()

GotSeolaeation() ‘_'J_‘
SetTaxt() I |- |

Here's the succession of events by which a list box's selection passesto an entry
field:
1. The list box tells its director that it's changed.

box's selection:

2. The director gets the selection from the list box.
3. The director passes the selection to the entry field.
4. Now that the entry field contains some text, the directorenables button(s)for initiating an

action (e.g., "demibold,"” "oblique").

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Here's how the FontDialogDirector abstraction can be integrated into aclasslibrary:

DialogDirector " director Widget
ShowDiakog() Changed{) ™H------ director—=WidgetChangad{this)
Create Widgets()
Widgetlhanged| 1¥idget) J\
ListBox EntryField

) . list
FonlDialogDirector B GetSelection() ’—- SetText])

CraaleWidgets() field
WidgetUhanged|{Widget)

DialogDirector is an abstract class that defines the overall behavior ofa dialog. Clients call the
ShowDialog operation to display the dialog onthe screen.

CreateWidgets is an abstract operation for creating thewidgets of a dialog. WidgetChanged is
another abstract operation; widgets call it to inform their director that they have
changed.DialogDirector subclasses override CreateWidgets to create the properwidgets, and they
override WidgetChanged to handle the changes.

Applicability

Use the Mediator pattern when
. aset of objects communicate in well-defined but complex ways. Theresulting interdependencies
are unstructured and difficult tounderstand.
« reusingan objectisdifficult because it refers to and communicates with many other objects.

o« a behavior that's distributed between several classes should
becustomizable without a lot of subclassing.

Structure

mediator
Mediator | Colleague

| ConcreteMediator I——| ConcreteColleaguel | ’——‘ ConcreteColleague2 |

A typical object structure might look like this:

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

T
. LSl LW L LT
[ and Za sl Parqnaguaas

L mrsmacdisalisr e

E Lo P N WEY -
A frairaesrarbasPlas st tesr ikl Al -

L - A

T T T T T
k rroncefigiloar o _.|

—— = i B e o LT --']

Participants

« Mediator (DialogDirector)
o defines an interface for communicating with Colleague objects.
« ConcreteMediator (FontDialogDirector)
o implements cooperative behavior by coordinating Colleague objects.
o knows and maintains its colleagues.
« Colleague classes (ListBox, EntryField)
o each Colleague class knows its Mediator object.

o each colleague communicates with its mediator whenever it would haveotherwise communicated
with another colleague.

Collaborations

. Colleagues send and receive requests from a Mediator object. Themediatorimplements the
cooperative behavior by routing requestsbetween the appropriate colleague(s).

Consequences

The Mediator pattern has the following benefits and drawbacks:
1. It limits subclassing

2. It decouples colleagues.
3. It simplifies object protocols.
a. It abstracts how objects cooperate.

5. It centralizes control.

Implementation

The following implementation issues are relevant to the Mediatorpattern:
1. Omitting the abstract Mediator class.

2. Colleague-Mediator communication.

Sample Code

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

We'll use a DialogDirector to implement the font dialog box shown inthe Motivation.The abstract

class DialogDirector definesthe interface for directors.

class DialogDirector {public:
virtual ~DialogDirector();
virtual void ShowDialog();
virtual void WidgetChanged(Widget*) = 0;
protected:
DialogDirector();
virtual void CreateWidgets() = 0;
b
Widget is the abstract base class for widgets. Awidget knows its director.
class Widget {
public:
Widget(DialogDirector*);
virtual void Changed();
virtual void HandleMouse(MouseEvent& event);
1
private:
DialogDirector* _director;

I3
Known Uses
Both ET++ [WGMB88] and the THINK C class library [Sym93b] use director-like objects in dialogs

as mediators between widgets.
Related Patterns

Facade (208) differs from Mediator in that it abstracts a subsystem of objects to provide a more
convenient interface. Its protocol is unidirectional; that is, Facade objects make requests of the
subsystem classes but notvice versa. In contrast, Mediator enables cooperative behaviorthat
colleague objects don't or can't provide, and the protocol ismultidirectional.

Colleagues can communicate with the mediator using the Observer (326) pattern.

Memento

Intent

Without violating encapsulation, capture and externalize an object'sinternal state so that the object

can be restored to this state later.

Also Known As

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Token

Motivation

Sometimes it's necessary to record the internal state of an object. This is required when implementing
checkpoints and undo mechanisms that let users back out of tentative operations or recover from
errors. You must save state information somewhere so that you can restore objects to their previous
states.

Consider for example a graphical editor that supports connectivity between objects.A user can connect
two rectangles with a line, and the rectangles stay connectedwhen the user moves either of them. The

editor ensures that the line stretchesto maintain the connection.

A well-known way to maintain connectivity relationships between objects is with a constraint-
solving system. We can encapsulate this functionality in a Constraint Solver object.Constraint Solver
records connections as they are made and generates mathematical equations that describe them. It
solves these equationswhenever the user makes a connection or otherwise modifies the diagram.
Constraint Solver uses the results of its calculations torearrange the graphics so that they maintain
the proper connections.

—

In general, the ConstraintSolver's public interface might beinsufficient to allow precise reversal of its
effects on otherobjects. The undo mechanism must work more closely withConstraintSolver to
reestablish previous state, but we should alsoavoid exposing the ConstraintSolver's internals to the

undo mechanism.

We can solve this problem with the Memento pattern. A memento is an object that stores a snapshot
of theinternal state of another object — the memento's originator. The undo mechanism will request
a mementofrom the originator when it needs to checkpoint the originator'sstate. The originator

initializes the memento with information thatcharacterizes its current state. Only the originator can

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns

(18CS731)

1.

store andretrieve information from the memento—the memento is "opaque" toother objects.

In the graphical editor example just discussed, the ConstraintSolver can actas an originator. The
following sequence of events characterizes theundo process:

. The editor requests a memento from the ConstraintSolver as aside-effect of the move operation.

. The ConstraintSolver creates and returns a memento, an instance of aclass SolverState in this case.
A SolverState memento contains datastructures that describe the current state of the
ConstraintSolver'sinternal equations and variables.

Later when the user undoes the move operation, the editor gives theSolverState back to the
ConstraintSolver.

Based on the information in the SolverState, the ConstraintSolverchanges its internal structures to

return its equations and variablesto their exact previous state.

Applicability

Use the Memento pattern when

« asnapshot of (some portion of) an object's state must be saved sothat itcan be restored to that state later, and

@)

o

« adirect interface to obtaining the state would exposeimplementationdetails and break the object's
encapsulation.

Structure
I
Griginator | MmN o | ”“’”'“"‘_.' Caratakor
SotMemento{Mamento m) GetSiated)
Crmalabamantosd) 5§ | Salsstatal)
staie : : siate
| |
| |
i i
| PRI Thiw Mr.-nu:nnm:.nm.-:nt‘ | atate = m --t:--:1:-.r.:1-:t;-E|

Participants

Memento (SolverState)
o stores internal state of the Originator object. The memento may store as much or as little of the
originator's internal state as necessary at its originator's discretion.

Protects against access by objects other than the originator.
Mementos have effectively two interfaces. Caretaker sees a narrow interface to the Memento—it can only

pass the memento to other objects. Originator, in contrast, sees a wide interface,
Originator (ConstraintSolver)
creates a memento containing a snapshot of its current internalstate.

uses the memento to restore its internal state.
Caretaker (undo mechanism)

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

o isresponsible for the memento's safekeeping.
o never operates on or examines the contents of a memento.

Collaborations
« A caretaker requests a memento from an originator, holds it for atime, andpasses it back to the originator, as

the followinginteraction diagram illustrates:

aaretaker anriginator aMamento
'
— CroatabAsmantod ) | '
s Feler s mites H
EalSiaia]) :
Sathdameanta(ahlameanto) 1
LT R B T T
[ |

Sometimes the caretaker won't pass the memento back to the originator, because the originator might never
need to revert to an earlier state.
« Mementos are passive. Only the originator that created a memento willassign or

retrieve its state.

Consequences
The Memento pattern has several consequences:

1. Preserving encapsulation boundaries.Memento avoids exposing information that only an originator
shouldmanage but that must be stored neverthelessoutside the originator.The pattern shields other objects
from potentiallycomplex Originatorinternals, thereby preserving encapsulation boundaries.

2. It simplifies Originator.In other encapsulation-preserving designs, Originator keeps theversions of internal
state that clients have requested. That puts allthe storage management burden on Originator. Having
clientsmanage the state they ask for simplifies Originator and keepsclientsfrom having to notify originators

when they're done.

3. Using mementos might be expensive.Mementos might incur considerable overhead if Originator must
copylarge amounts of information to store inthe memento or if clientscreate and return mementos to the
originator often enough. Unlessencapsulating and restoring Originator state is cheap, the patternmight not
be appropriate. See the discussion of incrementality in thelmplementation section.

4. Defining narrow and wide interfaces.lt may be difficult in some languages to ensure that only
theoriginator can access the memento's state.

5. Hidden costs in caring for mementos.A caretaker is responsible for deleting the mementos it cares
for.However, the caretaker has no idea how much stateis in the memento.Hence an otherwise lightweight

caretaker might incur largestoragecosts when it stores mementos.

Implementation

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns

(18CS731)

Here are two issues to consider when implementing the Memento pattern:

1. Language support.Mementos have two interfaces: a wide one for originatorsand a narrowone for other

objects. Ideally the implementation languagewillsupport two levels of static protection. C++ lets you do

this bymakingthe Originator a friend of Memento and making Memento's wideinterfaceprivate. Only the

narrow interface should be declaredpublic. For example:

class State;

class Originator {

public:

Memento* CreateMemento();

void SetMemento(const Memento*);
1

private:

State* _state;

/I internal data structures

..
Y
class Memento

{public:

/I narrow public interface

virtual ~Memento();

private:

/I private members accessible only to Originator
friend class Originator;

Memento();

void SetState(State*);

State* GetState();

1 :

private:

State* _state;

...

b

2. Storing incremental changes.When mementos get created and passed back to their originator in

apredictable sequence, then Memento can save just theincrementalchange to the originator's internal state.

Sample Code

The graphical editor calls the command's Execute operationto move a graphical object and Unexecute to undo

the move.The command stores its target, the distance moved, and an instance ofConstraintSolverMemento, a

memento containing state from theconstraint solver.

class Graphic;

// base class for graphical objects in the graphical editor
class MoveCommand {

public:

MoveCommand(Graphic* target, const Point& delta);
void Execute();

Void Unexecute();

private:

7" Semester, Dept of CSE

Page : 11



Software Architecture and Design Patterns (18CS731)

ConstraintSolverMemento*
_state;Point _delta;
Graphic* _target;
j3
Known Uses
The preceding sample code is based on Unidraw's support for connectivitythroughits CSolver class [VL90].

Collections in Dylan [App92] provide an iteration interface thatreflects theMemento pattern.
Dylan's collections have the notion of a"state" object, which is a memento that represents the state of

theiteration. Each collection can represent the current state of theiteration in any way it chooses; the

representation is completelyhidden from clients.

The memento-based iteration interface has two interesting benefits:

1. Morethan one state can work on the same collection.

2. It doesn't require breaking a collection's encapsulationto support iteration. The memento is only interpreted
by thecollection itself; no one else has access to it. Other approaches to iteration require breaking
encapsulation by making iterator classesfriends of their collection classes. The situation is reversed in
thememento-basedimplementation: Collection is a friend of thelteratorState.

The QOCA constraint-solving toolkit stores incremental information inmementos[HHMV92].

Related Patterns
Command (263): Commands can use mementos to maintainstate for undoable operations.

Iterator (289): Mementoscan be used for iteration as described earlier.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Observ
er
Inte
nt

Define a one-to-many dependency between objects so that when oneobject changesstate, all its

dependents are notified and updatedautomatically.

Also Known As
Dependents, Publish-Subscribe

Motivation
A common side-effect of partitioning a system into a collection ofcooperatingclasses is the need to
maintain consistency betweenrelated objects. You don'twant to achieve consistency by making
theclasses tightly coupled, because thatreduces their reusability.
Ex:Classes defining application data and presentations can be reusedindependently. They can work
together, too. Both a spreadsheet objectand bar chart object can depict information in the same
application dataobject using different presentations. The spreadsheet and the bar chartdon't know
about each other, thereby letting you reuse only the one youneed. But they behave as though they
do. When the user changes theinformation in the spreadsheet, the bar chart reflects the

changesimmediately, and vice versa.

obhaarvers

I vetrvctere p— T _voterciores s— 1

= changa otificalicn
—_——— e recguessts, modificostion

subjoct

Applicability

Use the Observer pattern in any of the following situations:
« When an abstraction has two aspects, one dependent on the other.Encapsulating these aspects in

separate objects lets you vary andreuse them independently.

« When a change to one object requires changing others, and youdon't knowhow many objects need
to be changed.

« When an object should be able to notify other objects without makingassumptions about who

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

these objects are. In other words, you don'twant these objects tightly coupled.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Structure

Subject observers Observer

AttachiObserver) Ulpdatef)

Attact . ‘ {}

L}eicfu,h[{)t}seruer, for all o in chservers Eh

Motifyl) o —— — - - - o-=Lipdate()

}
Zé ConcreteObserver
) subject beerarState = =
. -k -4 obsererState

ConcreteSubject |.g Uipdate{) subject-=GetStatel)
GetState() ©---F -1 ) i = obsarvarState

SetState() returm subjectState

subjectSiate

Participants
« Subject
o knows its observers. Any number of Observer objects may observe asubject.
o provides an interface for attaching and detaching Observer objects.
« Observer
o defines an updating interface for objects that should be notifiedof changes in a
subject.
« ConcreteSubject
o stores state of interest to ConcreteObserver objects.
o sends a notification to its observers when its state changes.
« ConcreteObserver
o maintains a reference to a ConcreteSubject object.
o stores state that should stay consistent with the subject's.
o implements the Observer updating interface to keep its stateconsistent with the subject's.

Collaborations

. ConcreteSubject notifies its observers whenever a changeoccurs that couldmake its observers'
state inconsistent with its own.

. After being informed of a change in the concrete subject, aConcreteObserverobject may query the
subject for information.ConcreteObserver uses this information to reconcile its state with thatof
the subject.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

The following interaction diagram illustrates the collaborationsbetweena subject and two observers:

aConcreteSubject aConcreteObserver anotherConcreteObserver

! SetState() Llj
==
Plotify ()

Update()
UH[HIL‘I!EH:TI—}
o |-

Ulpdata()

__ GetState() j
I

Note how the Observer object that initiates the change requestpostponesits update until it gets a

notification fromthe subject.Notify is not alwayscalled by the subject. It can be called by anobserver or

by another kindof object entirely. The Implementationsection discusses some common variations.
Consequences

The Observer pattern lets you vary subjects and observersindependently. You can reuse subjects
without reusing theirobservers, and vice versa. It lets you addobservers withoutmodifying the subject
or other observers.

Further benefits and liabilities of the Observer pattern include thefollowing:

1. Abstract coupling between Subject and Observer
2. Support for broadcast communication.

3. Unexpected updates.
Implementation

Several issues related to the implementation of the dependencymechanism arediscussed in this

section.

1. Mapping subjects to their observers.The simplest way for a subject to keeptrack of the observers
itshould notify is to store references to themexplicitly in thesubject. an associative look-up to

maintainthesubject-to-observer mapping.

2. Observing more than one subject.It might make sense in some situations foran observer to depend

onmore than one subject. For example, a spreadsheetmay depend on morethan one data source.

3. Who triggers the update?The subject and its observers rely on the notification mechanism tostay

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

consistent. But what object actually callsNotify to trigger theupdate? Here are two options:

a. Have state-setting operations on Subject call Notify after theychange the subject's state. The
advantage of this approach isthatclients don't have to remember to call Notify on the subject.
Thedisadvantage is that several consecutive operations will causeseveral consecutive updates,
which may be inefficient.

n. Make clients responsible for calling Notify at the right time. Theadvantage here is that the client can
wait to trigger the updateuntilafter a series of state changes has been made, therebyavoiding
needless intermediate updates. The disadvantage is thatclients havean added responsibility to
trigger the update. Thatmakes errors morelikely, since clients might forget to call Notify.

4. Dangling references to deleted subjects.Deleting a subject should notproduce dangling references
in itsobservers. One way to avoid danglingreferences is to make thesubject notify its observers as
it is deleted sothat they can resettheir reference to it. In general, simply deleting theobservers is
not an option, because other objects may reference them, orthey may beobserving other subjects as
well.

5. Making sure Subject state is self-consistent beforenotification.It's important to make sure Subject
state is self-consistent beforecallingNotify, because observers query the subject for its currentstate
in thecourse of updating their own state.

6. This self-consistency rule is easy to violate unintentionally whenSubject subclass operations call
inherited operations. For example,the notification in the following code sequence is trigged when

thesubject is in an inconsistent state:

void MySubiject::Operation (int newValue) {
BaseClassSubject::Operation(newValue);

/I trigger notification

_mylnstVar += newValue;

/I update subclass state (too late!)

}

7. Avoiding observer-specific update protocols: the pushand pull models. Implementations of the
Observer pattern often havethe subject broadcastadditional information about the change. Thesubject

passes this information as an argument to Update. The amountof information may varywidely.

At one extreme, which we call the push model, the subjectsends observersdetailed information about
the change, whether theywant it or not. At theother extreme is the pull model;the subject sends

nothing but the mostminimal notification, andobservers ask for details explicitly thereafter.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns

(18CS731)

8.

Specifying modifications of interest explicitly.You can improve updateefficiency by extending the
subject'sregistration interface to allow registering observers only forspecific events of interest.
When such anevent occurs, the subjectinforms only those observers that have registeredinterest in

thatevent. One way to support this uses the notion ofaspectsfor Subject objects.

. Encapsulating complex update semantics.When the dependency relationshipbetween subjects and

observers isparticularly complex, an object thatmaintains these relationships mightbe required. We
call such an objectaChangeManager. Itspurpose is to minimize the work required to make observers
reflect achange in their subject.

ChangeManager has three responsibilities:

It maps a subject to its observers and provides an interface tomaintain this mapping. This

eliminates the need for subjects tomaintainreferences to their observers and vice versa.

It defines a particular update strategy.
It updates all dependent observers at the request of a subject.

The following diagram depicts a simple ChangeManager-based implementation ofthe Observer

pattern. There are two specialized ChangeManagers.SimpleChangeManager is naive in that it

always updates allobservers ofeach subject. In contrast, DAGChangeManager handles directed-

acyclicgraphs of dependencies between subjects and their observers. ADAGChangeManager is

preferable to a SimpleChangeManager whenan observerobserves more than one subject. In that case,

a change in twoor moresubjects might cause redundant updates. The DAGChangeManager ensuresthe

observer receives just one update. SimpleChangeManager isfinewhen multiple updates aren't an

issue.

Subject ChangeManager Obuerver

Attnch(Observel 0) ¢ UHBIREER . SegimtercSutyeot, Obssrver) Liprctmto(Sitsject)
Dutach{Observar) H UnragisterfSautyeot. Obusecver)

Notily() o ' ahrnan Notitye)
1 i

1 Subject-Obaarver Imapping
1

i
onman - «Notifyly 1
1

SimpleChangeMannger DAGCHhangeMannger

Flugintarn(Subject, Obuervar) Regisier(Sulbject, Obsarvear)
Unregimtern Subject, Obearver) Unregistan(Subject, Obsoervear)
Natity() @ Notity() ¢

. e

\ V

H '
| |
= =
forall s in subjeots mark all observaers 1o update
focal buorvers update all marked obsarves

Ul o N s.o .
O mUpdates)

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

ChangeManager is an instance of the Mediator (305) pattern. In general there is only one

ChangeManager, and it is knownglobally. The Singleton (144)pattern would beuseful here.

10. Combining the Subject and Observer classes.Class libraries written in languages that lack
multiple inheritance(like Smalltalk) generally don'tdefine separate Subject and Observerclasses
but combine their interfacesin one class. That lets youdefine an object that acts as both a subject
and an observer withoutmultiple inheritance. In Smalltalk, for example,the Subject andObserver

interfaces are defined in the root class Object,making themavailable to all classes.

Sample Code

An abstract class defines the Observer interface:
class Subject;
class Observer {

public:
virtual ~ Observer();
virtual void Update(Subject* theChangedSubject) = 0;protected:
Observer();

I3

This implementation supports multiple subjects for each observer. Thesubjectpassed to the Update

operation lets the observerdetermine which subject changedwhen it observes more than one.

Known Uses
» The first and perhaps best-known example of the Observer pattern appearsin

» Smalltalk Model/View/Controller (MVC), the wuser interface framework in the
Smalltalkenvironment [KP88]. MVC's Model class plays the role ofSubject, whileView is the
base class for observers. Smalltalk,ET++ [WGM88], and the THINK classlibrary [Sym93b]
provide ageneral dependency mechanism by putting Subject and Observer interfacesin the
parent class for all other classes in the system.

» Other user interface toolkits that employ this pattern arelnterViews [LVC89], the
AndrewToolkit [P+88], and Unidraw [VL90]. InterViewsdefines Observer andObservable
classes explicitly. Andrew calls them "view" and "dataobject,” respectively. Unidrawsplits

graphical editor objects into View (forobservers) and Subjectparts.

Related Patterns

Mediator (305): Byencapsulating complex update semantics, the ChangeManager actsasmediator
between subjects and observers.

Singleton (144):The ChangeManager may use the Singleton pattern to make ituniqueand globally

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

accessible.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

State

Intent

Allow an object to alter its behavior when its internal state changes.The object will appear to
change its class.

Also Known As
Objects for States

Motivation

Consider a class TCPConnection that represents a network connection.A TCPConnection object can
be in one of several different states: Established, Listening Closed. When a TCPConnection object
receivesrequests from other objects, it responds differently depending on itscurrent state. For
example, the effect of an Open request depends onwhether the connection is in its Closed state or its

Establishedstate. The State pattern describes how TCPConnection can exhibitdifferent behavior in

each state.
TCPConnection state _ | TcPstate
Open{() o——-—-—- 1 Open('s
Glosel) i Closeai)
Acknowladge() i Acknowledge( )
1
T
1
; A
state—=Open() '| |
TCPEstablished TCPListen TCPClosed
Opend) Chpan() Openi}
Close() Close() Closea()
Acknowliedged) Acknowledged) Acknowiedgea()

The class TCPConnection maintains a state object that represents the current state of the
TCPconnection. The class TCPConnection delegates all state-specificrequests to this state
object. TCPConnection uses its TCPStatesubclass instance to perform operations particularto the state
of theconnection.

Whenever the connection changes state, the TCPConnection objectchanges the state object it uses.
When the connection goes fromestablished to closed, for example, TCPConnection will replace
itsTCPEstablished instance with a TCPClosed instance.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Applicability

Use the State pattern in either of the following cases:

« An object's behavior depends on its state, and it must change itsbehavior at run-time depending
on that state.

. Operations have large, multipart conditional statements that depend onthe object's state.

Structure
Context .:;f’!"‘*m Stare
Requast)) @ Handle()
5 A
1
state—=Handla() \B"| |
ConcreteStateA ConcreteStateB
Handle() Handie()

Participants
« Context (TCPConnection)
o Defines the interface of interest to clients.

o Maintains an instance of a ConcreteState subclass that defines thecurrent state.
o State (TCPState)

o Defines an interface for encapsulating the behavior associated with aparticular state of the
Context.

o ConcreteState subclasses (TCPEstablished, TCPListen, TCPClosed)
o Each subclass implements a behavior associated with a state ofthe Context.
Collaborations

. Context delegates state-specific requests to the currentConcreteStateobject.

. A context may pass itself as an argument to the State objecthandling therequest. This lets the State
object accessthe context if necessary.

« Either Context or the ConcreteState subclasses can decide whichstatesucceeds another and under
what circumstances.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Consequences
The State pattern has the following consequences:

1. It localizes state-specific behavior and partitionsbehavior for different state
2. It makes state transitions explicit.

3. State objects can be shared.

Implementation
The State pattern raises a variety of implementation issues:

1. Who defines the state transitions? The State pattern does not specify which participant defines the
criteria for state transitions. If the criteria are fixed, then they can be implemented entirely in the
Context. It is generally more flexible and appropriate, however, to let the State subclasses themselves
specify their successor state and when to make thetransition. This requires adding an interface to the

Context that lets State objects set the Context's current state explicitly.

2. A table-based alternative.In C++ Programming Style , Cargilldescribes another way to impose
structure on state-driven code:Heuses tables to map inputs to state transitions. For each state, atablemaps
every possible input to a succeeding state. In effect,this approach converts conditional code into a table
look-up.

The main advantage of tables is their regularity: You can change thetransition criteria by modifying
data instead of changing programcode.There are some disadvantages, however:

o Atable look-up is often less efficient than a (virtual)functioncall.

o Putting transition logic into a uniform, tabular format makesthetransition criteria less explicit and
therefore harder tounderstand.

o It's usually difficult to add actions to accompany the statetransitions. The table-driven approach
captures the states andtheirtransitions, but it must be augmented to perform arbitrarycomputationon
each transition.

3. Creating and destroying State objects.A common implementation trade-off worth considering is
whether(1) to create State objects only when they areneeded and destroy themthereafter versus (2)
creating them ahead of timeand neverdestroying them.

a. Using dynamic inheritance.Changing the behavior for a particular request could be
accomplishedby changing the object's class at run-time, but this is not possiblein most object-
oriented programming languages. Objects in Selfcan delegate operations to other objects to achieve

aform of dynamic inheritance. Changing the delegation target atrun-time effectively changesthe

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

inheritance structure. Thismechanism lets objects change their behavior and amounts to

changingtheir class.

Sample Code
The following example gives the C++ code for the TCP connectionexample described in the

Motivation section. This example is asimplified version of the TCP protocol; it doesn't describe
thecomplete protocol or all the states of TCPconnections.®
First, we define the class TCPConnection, which provides aninterface fortransmitting data and

handles requests to change state.

class TCPOctetStream; class
TCPState;
Class TCPConnection {
public:
TCPConnection();
void ActiveOpen(); void
PassiveOpen(); void
Close();
void Send();
void Acknowledge();void
Synchronize();

TCPConnection keeps an instance of the TCPStateclass in the _state member variable. The
classTCPState duplicates the state-changing interface of TCPConnection. Each TCPState operation
takes aTCPConnection instance as a parameter, lettingTCPState access data from TCPConnection
andchange the connection's state.

class TCPState {

public:
virtual void Transmit(TCPConnection*, TCPOctetStream*);virtual
void ActiveOpen(TCPConnection*);
virtual void PassiveOpen(TCPConnection*);virtual void
Close(TCPConnection*); virtual void
Synchronize(TCPConnection*);
virtual void Acknowledge(TCPConnection*);virtual void
Send(TCPConnection*);

protected:
void ChangeState(TCPConnection*, TCPState*);

|3

Known Uses

» Johnson and Zweig [JZ91] characterize theState pattern and its application toTCP connection
protocols.

» This technique is used in both the HotDraw [Joh92] and Unidraw [VL90] drawingeditor
frameworks. It allows clients to define new kinds of tools easily. In HotDraw, the

DrawingController class forwards the requests to the current Tool object.In Unidraw, the

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

corresponding classes are Viewer and Tool.

> Coplien's Envelope-Letter idiom [Cop92] is related toState. Envelope-Letter isa technique for
changing an object's class atrun-time. The State pattern is more specific, focusing on how to

dealwith an object whose behavior depends on its state.

Related Patterns
The Flyweight (218) pattern explains when and how State objects can be shared.
State objects are often Singletons (144).

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Strate
gy
Int
ent

Define a family of algorithms, encapsulate each one, and make them interchangeable. Strategy lets
the algorithm vary independently from clients that use it.

Also Known As
Policy
Motivation
Many algorithms exist for breaking a stream of text into lines.Hard-wiring allsuch algorithms into the
classes that require themisn't desirable for severalreasons:
« Clients that need linebreaking get more complex if they includethelinebreaking code. That makes
clients bigger and harder to maintain,especially if they support multiple linebreaking algorithms.

e Composiar -
Composition [ i ™ Compositor
Travarse(} Compose|)
Hepairi)

' A

1

! | | |

I ] SimpleCompositor TeXCompositor ArrayCompositor

compaositor->Composel)
Composal) Composal) Composea()

Suppose a Composition class is responsible for maintaining andupdating the linebreaks of text
displayed in a text viewer.Linebreaking strategies aren't implemented by the class
Composition.Instead, they are implemented separatelyby subclasses of the abstractCompositor class.

Compositor subclasses implementdifferent strategies:

« SimpleCompositorimplements a simple strategy that determines linebreaksone at atime.

« TeXCompositorimplements the TeX algorithm for finding linebreaks. Thisstrategytries to optimize
linebreaks globally, that is, one paragraph at atime.

. ArrayCompositorimplements a strategy that selects breaks so that each rowhas a fixednumber of
items. It's useful for breaking a collection of iconsintorows, for example.
A Composition maintains a reference to a Compositor object. Whenever aCompositionreformats its

text, it forwards this responsibility to itsCompositor object. The client of Composition specifies

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

whichCompositor should be used by installing theCompositor it desires intothe Composition.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Applicability
Use the Strategy pattern when

. many related classes differ only in their behavior. Strategiesprovide away to configure a class with one
of many behaviors.

« Yyou need different variants of an algorithm. For example, you might definealgorithms reflecting
different space/time trade-offs.Strategies can be used when these variants are implemented as a

classhierarchy ofalgorithms

e an algiorithm uses data that clients shouldn't know about. Use theStrategy pattern to avoid exposing
complex, algorithm-specific datastructures.

. aclass defines many behaviors, and these appear as multipleconditionalstatements in its operations.
Instead of manyconditionals, move related conditional branches into their ownStrategy class.

Structure
strate
Context - ay w Strategy
Contextinterface]) Algorithminterface()
ConcrateStrategy A ConcreteStrategyB ConcreteStrategyC
Algorthminterface!) Algorithminterfacel) Algorthminterface)

Participants

. Strategy (Compositor)

o declaresaninterface common to all supported algorithms. Contextuses this interface to call the
algorithm defined by a ConcreteStrategy.

« ConcreteStrategy (SimpleCompositor, TeXCompositor,ArrayCompositor)

o implements the algorithm using the Strategy interface.

« Context (Composition)

o is configured with a ConcreteStrategy object.

o maintains a reference to a Strategy object.

o may define an interface that lets Strategy access its data.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns

(18CS731)

Collaborations

. Strategy and Context interact to implement the chosen algorithm. Acontextmay pass all data required

by the algorithm to the strategywhen the algorithm is called.

« A context forwards requests from its clients to its strategy. Clientsusually create and pass a

oncreteStrategy object to the context;thereafter, clients interact with the context exclusively. There

isoften a family ofConcreteStrategy classes for a client to choosefrom.

Consequences

The Strategy pattern has the following benefits and drawbacks:

6.

7.

. Families of related algorithms.

. Analternative to subclassing

. Strategies eliminate conditional statements.
. A choice of implementations.

. Clients must be aware of different Strategies.

Communication overhead between Strategy and Context..

Increased number of objects.

Implementation

1.

Consider the following implementation issues:

Defining the Strategy and Context interfaces.The Strategy and Contextinterfaces must give a
ConcreteStrategyefficient access to any data it needsfrom a context, and vice versa.

One approach is to have Context pass data in parameters to Strategyoperations—in other words,
take the data to the strategy. ThiskeepsStrategy and Context decoupled. On the other hand,
Context mightpassdata the Strategy doesn't need.

. Strategies as template parameters.In C++ templates can be used to configure a class with a

strategy.This technique is only applicable if (1) the Strategycan be selectedat compile-time, and (2) it
does not have to be changed atrun-time.In this case, the class to be configured (e.g., Context)
isdefinedas a template class that has a Strategy class as aparameter:

template <class AStrategy>

class Context {

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

void Operation() { theStrategy.DoAlgorithm(); }
...

private:
AStrategy theStrategy;

}

The class is then configured with a Strategy class when it'isnstantiated:

class MyStrategy {public:
void DoAlgorithm();

b
Context<MyStrategy> aContext;

With templates, there's no need to define an abstract class that definesthe interface to the Strategy.
Using Strategy as atemplate parameter alsolets you bind a Strategy to itsContext statically, which

can increaseefficiency.

3. Making Strategy objects optional. The Context class may be simplified ifit's meaningful not tohave
a Strategy object. Context checks to see if ithas a Strategyobject before accessing it. If there is
one, then Context uses itnormally. If there isn't a strategy, then Context carries out
defaultbehavior. The benefit of this approach is that clients don't havetodeal with Strategy objects at

all unless they don't like thedefaultbehavior.

Sample Code

We'll give the high-level code for the Motivation example, which isbased on theimplementation of
Composition and Compositor classes inInterViews.

The Composition class maintains a collection ofComponent instances, which represent text and
graphicalelements in a document. A composition arranges component objects intolines using an
instance of a Compositor subclass, whichencapsulates a linebreaking strategy. Each component has
anassociated natural size, stretchability, and shrinkability. Thestretchability defines howmuch the
component can grow beyond itsnatural size; shrinkability is how muchit can shrink. Thecomposition

passes these values to a compositor, which usesthem todetermine the best location for linebreaks.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

class Composition {public:
composition(compositor*);
void Repair();
private Compositor* _compositor;
component * _components;
int _componentCount;
int _lineWidth;
int* _lineBreaks;// the position of linebreaks in components
int _lineCount;// the number of lines

b
Known Uses

Both ET++ [WGMB88] and InterViews use strategies to encapsulatedifferentlinebreaking algorithms

as we've described.

In the RTL System for compiler code optimization [JML92], strategies define different register
allocation schemes (RegisterAllocator) and instruction set scheduling policies(RISCscheduler,
CISCscheduler). This provides flexibility in targeting theoptimizer for different machine

architectures.

The ET++SwapsManager calculation engine framework computes prices fordifferent financial
instruments [EG92]. Its keyabstractions are Instrument and YieldCurve. Different instruments
areimplemented as subclasses of Instrument. YieldCurve calculatesdiscount factors, which
determine the present value of future cashflows. Both of these classes delegate some behavior to
Strategyobjects. The framework provides a family of ConcreteStrategy classesfor generating cash
flows, valuing swaps, and calculating discountfactors. You can create new calculation engines by
configuringInstrument and YieldCurve with the different ConcreteStrategy objects.This approach

supports mixing and matching existing Strategyimplementations as well as defining new ones.

The Booch components [BV90] use strategies as templatearguments. The Booch collection classes

support three different kinds ofmemory allocation strategies: managed, controlled, andunmanaged.

RApp is a system for integrated circuit layout [GA89, AG90].RApp must lay out and route wires
that connect subsystems on thecircuit. Routing algorithms in RApp are defined assubclasses of an

abstract Router class. Router is a Strategy class.

Related Patterns

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Flyweight (218): Strategy objects often make good flyweights.

Template Method

Intent
Define the skeleton of an algorithm in an operation, deferring somesteps to subclasses. Template

Method lets subclasses redefinecertain steps of an algorithm without changing the

algorithm'sstructure.

Motivation
Consider an application framework that provides Application andDocument classes. The Application

class is responsible for openingexisting documents stored in an external format, such as a file.
ADocument object represents the information ina document once it'sread from the file.

Applications built with the framework can subclass Application andDocument tosuit specific needs.
For example, a drawing applicationdefines DrawApplication and DrawDocument subclasses; a

spreadsheetapplication defines SpreadsheetApplication and SpreadsheetDocumentsubclasses.

hocs

Docurmernt [ A pplication

Sawvel} AddDoeurment])

Opend) Opanocumeant()

Closea(y OoCreatalocumeani(y

DaoFead() CanCpenDocormenti
About ToOpenDocunent()

MyDocument - ——-——-—-—- MyApplication

DoRead{) DoCreateDocument(y & {--—-—- ‘I return new hyDocument ‘b\|
CanCpanDocumeant()
AboutToOpenDocument|)

The abstract Application class defines the algorithm for opening andreading adocument in its

OpenDocument operation:

void Application::OpenDocument (const char* name)
{if (!CanOpenDocument(name)) {
/I cannot handle this documentreturn;

}

Document* doc = DoCreateDocument();
if (doc) {
_docs->AddDocument(doc);
AboutToOpenDocument(doc);
doc->Open();
doc->DoRead();

}
}
OpenDcument defines each step for opening a document. It checks ifthe document can be opened,

creates the application-specific Documentobject, adds it to itsset of documents, and reads the

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Document from afile.

We call OpenDocument a template method. A template methoddefines an algorithmin terms of
abstract operations that subclassesoverride to provide concrete behavior. Application subclasses
definethe steps of the algorithm that check ifthe document can be opened(CanOpenDocument) and
that create the Document (DoCreateDocument).Document classes define the step that reads the
document (DoRead).The template method also defines an operation that lets Applicationsubclasses

know when the document is about to be opened(AboutToOpenDocument), in case they care.

By defining some of the steps of an algorithm using abstractoperations, thetemplate method fixes

their ordering, but it letsApplication and Document subclasses vary those steps to suit theirneeds.
Applicability

The Template Method pattern should be used
. to implement the invariant parts of an algorithm once and leave it uptosubclasses to implement
the behavior that can vary.

« When common behavior among subclasses should be factored and localizedina common class
to avoid code duplication. This is a good example

of"'refactoring to generalize".

« to control subclasses extensions. You can define a template methodthat calls"hook" operations at
specific points,thereby permitting extensions only at those points.

T e T et re Lt e Tt

pants — v
Nermplatabistiod ) I Frrirmibi el e s tioe 0
FElrai v O e o 780 ;
Frrirratfives e s hear iy Ferirrid b ed 3 praarsa ticwn = ()
ConoreteClass
Frimitivesd pesratiom 100
FrrimitiveiparationzZ)

« AbstractClass (Application)
o defines abstract primitive operations that concretesubclasses define to

implement steps of an algorithm.
o implements a template method defining the skeleton of an algorithm.The template method calls

primitive operations as wellas operationsdefined in AbstractClass or those of other objects.
« ConcreteClass (MyApplication)

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns

(18CS731)

o implements the primitive operations to carry outsubclass-specificsteps of the algorithm.

Collaborations
ConcreteClass relies on AbstractClass to implement the invariant steps ofthe algorithm.

Consequences
Template methods are a fundamental technique for code reuse. They areparticularlyimportant in class

libraries, because they are the meansfor factoring out commonbehavior in library classes.
Template methods lead to an inverted control structure Template methods call the following kinds of

operations:

« concrete operations
. concrete AbstractClass operations

« primitive operations
. factory methods
. hook operations, which provide default behavior thatsubclasses can extend if

necessary. A hook operation often doesnothing by default.

It's important for template methods to specify which operations arehooks and which are abstract
operations.To reusean abstract class effectively,subclass writers must understand which operations

are designed foroverriding.

A subclass can extend a parent class operation's behavior byoverriding theoperation and calling the

parent operation explicitly:

void DerivedClass::Operation () {
/I DerivedClass extended behavior
ParentClass::Operation();

}

Unfortunately, it's easy to forget to call the inherited operation.We can transformsuch an operation into
a template method to givethe parent control over how subclasses extend it. The idea is tocall a hook
operation from a template methodin the parent class.Then subclasses can then override this hook

operation:

void ParentClass::Operation () {
1 ParentClass behavior
HookOperation();

}

HookOperation does nothing in ParentClass:

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)
void ParentClass::HookOperation () { }
Subclasses override HookOperation to extend itsbehavior:
void DerivedClass::HookOperation () {

/I derived class extension

}

Implementation

Three implementation issues are worth noting:

1. Using C++ access control.In C++, the primitive operations that a templatemethod calls can
bedeclared protected members. This ensures that they areonly called bythe template method.
Primitive operations that must be overridden aredeclared pure virtual. The template method itself
should notbeoverridden; therefore you can make the template method a nonvirtualmemberfunction.

2. Minimizing primitive operations.An important goal in designing templatemethods is to minimize
thenumber of primitive operations that a subclassmust override to fleshout the algorithm. The more
operations that needoverriding, the moretedious things get for clients.

3. Naming conventions.You can identify the operations that should be overridden by adding
aprefix to their names. For example, the MacApp framework for Macintoshapplications [App89]

prefixes template method nameswith "Do-":"DoCreateDocument”, "DoRead", and so forth.

Sample Code

The following C++ example shows how a parent class can enforce aninvariant forits subclasses. The
example comes from NeXT'sAppKit [Add94]. Consider a classView that supportsdrawing on the
screen. View enforces the invariant that itssubclasses can draw into a view only after it becomes the

"focus,"which requirescertain drawing state to be set up properly.

We can use a Display template method to set up this state.View defines two concrete
operations,SetFocus and ResetFocus, that set up and clean upthe drawing state,respectively. View's
DoDisplayhook operation performs the actual drawing. DisplaycallsSetFocus before DoDisplay to
set up the drawingstate; Display calls ResetFocus afterwards torelease the drawing state.
void View::Display () {
SetFocus();
DoDisplay();

ResetFocus();

}
To maintain the invariant, the View's clients always callDisplay, and Viewsubclasses always override

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Do Display.

DoDisplay does nothing in View:

void View::DoDisplay () { }
Subclasses override it to add their specific drawing behavior:

void MyView::DoDisplay () {
/l render the view's contents

}

Known Uses
» Template methods are so fundamental that they can be found in almostevery abstract class.

Wirfs-Brock et al. [WBWW90, WBJ90] provide a good overview anddiscussion of template
methods.
Related Patterns

» Factory Methods (121) are often called by template methods. In the Motivationexample,the

factory method DoCreateDocument is called by the template methodOpenDocument.

» Strategy (349): Template methods use inheritance to vary part of analgorithm.Strategies use

delegation to vary the entire algorithm.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

Visitor
Intent
Represent an operation to be performed on the elements of an objectstructure.

Motivation
Consider a compiler that represents programs as abstract syntax trees.It will need to perform

operations on abstract syntax trees for "static semantic" analyses like checking that all variables are
defined. we could use the abstract syntax trees for pretty-printing, program restructuring, code

instrumentation, and computing various metrics ofaprogram.

Node

TypaeCheck()

GenerateCode(}

PrettyPrintf)
VariableRefNode AssignmentNode
TypeCheck() TypeCheck()
GenerateCodea() GenerateCode()
PrettyPrint) PretiyPrint()

This diagram shows part of the Node class hierarchy. The problem here is thatdistributing all these
operations across the various nodeclasses leads to a system that's hard to understand, maintain,
andchange. It will be confusing to have pre-checking code mixed withpretty-printing code or flow
analysis code. Moreover,adding a newoperation usually requires recompiling all of these classes. It
would bebetter if each new operation could be added separately, and the nodeclasses were

independent of the operations that apply to them.

We can have both by packaging related operations from each class in aseparateobject, called a
visitor, and passing it toelements of the abstract syntax treeas it's traversed. When an element™accepts"
the visitor, it sends a request tothe visitor that encodesthe element's class. It also includes the element as
anargument. Thevisitor will then execute the operation for that element—theoperationthat used to be

in the class of the element.

For example, a compiler that didn't use visitors might type-check aprocedure by calling the

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

TypeCheck operation on its abstract syntaxtree. Each of the nodeswould implement TypeCheck by

calling TypeCheckon its components . If the compilertype-checked a procedure using visitors, then
itwould create aTypeCheckingVisitor object and call the Accept operation on theabstract syntax tree
with that object as an argument. Each of thenodes wouldimplement Accept by calling back on the
visitor: anassignment node calls VisitAssignment operation on the visitor, whilea variable reference
calls VisitVariableReference. What used to be theTypeCheck operation in class AssignmentNode is

now the VisitAssignmentoperation on TypeCheckingVisitor.

To make visitors work for more than just type-checking, we need anabstract parentclass NodeVisitor
for all visitors of an abstract syntaxtree. NodeVisitor mustdeclare an operation for each node class.
Anapplication that needs to computeprogram metrics will define newsubclasses of NodeVisitor and
will no longer need to add application-specific code to the node classes. The Visitor pattern

encapsulates the operations for each compilation phase in a Visitor associatedwith that phase.

NodeVisitor

VisitAssignmantjAssignmeniNode)
VisitVarableRefiVarableRefNode)

A

TypeCheckingVisitor CodeGeneratingVisitor

Visithssignment{AssignmentMaode) Visithssignment{AssignmentMode)

WVisitVariable Ref{\VariableHefMade) VisitVariable Ref{\VariableHefMode)
Program Q—F-J Node

AcceptiNodelfisitor)

AssignmentMode VariableRelMode

AccaptModaVisitor v) IIJ Accepl|MadeVisitor v) '?
i i
I I
1 1

v==VisitAssignment ['.hlﬁ:lh"|

v—=WisitVariableHal{th 5]\‘}"|

With the Visitor pattern, you define two class hierarchies: one for theelementsbeing operated on

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

and one for the visitorsthat define operations on the elements . You create a new operationby adding

a new subclass to the visitor classhierarchy. As long as the grammar that the compiler accepts

doesn'tchange , we can addnew functionality simply by defining new NodeVisitor subclasses.
Applicability

Use the Visitor pattern when
« an object structure contains many classes of objects with differing interfaces, and you want to

perform operations on these objects that depend on their concrete classes.

. manydistinctand unrelated operations need to be performed on objectsinan object structure, and you
want to avoid "polluting” theirclasses with these operations.

« Visitor lets you keep related operationstogether bydefining them in one class.

. the classes defining the object structure rarely change, but you oftenwant to define new

operations over the structure.

Structure

Partici
pi

I ‘ 1
ConacretaVinitor s ConoroteVismmora
At Sumtrnrrnatanh lenrrman i0ACE Soarmatwalonh lastrnsanat g

B B B T I P S R B R
B T B N N LT S e S P R DL verte '

T I T R LR T RS POY LR T T RS

l OB jectStructure l Elerryvenry 4
Aviwomnga 8 Vanaridvre )
[ A 1
ACcantVinitor v)
CrpmrmilanAacy

PoS——" PSP —— A I

[ =yt ancreiat .\.;\*q L VT — .\,“‘\1

« Visitor (NodeVisitor)
o Declares a Visit operation for each class of ConcreteElement in theobject structure. The operation's

name and signature identifies theclass that sends the Visit request to the visitor. That lets thevisitor
determine the concrete class of the element being visited. Then the visitor can access the element

directly through its particular interface.

« ConcreteVisitor (TypeCheckingVisitor)
o Implements each operation declared by Visitor. Each operation implements a fragment of the

algorithm defined for the correspondingclass of object in the structure. ConcreteVisitor provides
the context for the algorithm and stores its local state. This stateoften accumulates results during

the traversal of the structure.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

o« Element (Node)

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

o defines an Accept operation that takes a visitor as an argument.
« ConcreteElement (AssignmentNode, VariableRefNode)
o implements an Accept operation that takes a visitor as an argument.
« ObjectStructure (Program)
o Ccanenumerate its elements.
o may provide a high-level interface to allow the visitor to visitits elements.

o may either be acomposite (see Composite (183)) or a collection suchas a list or a set.

Collaborations

« A client that uses the Visitor pattern must create a ConcreteVisitorobject and then traverse the
object structure, visiting each elementwith the visitor.

« When an element is visited, it calls the Visitor operation thatcorresponds to its class. The element
supplies itself as an argumentto this operation to let the visitor access its state, if necessary.

The following interaction diagram illustrates the collaborationsbetween an object structure, a

visitor, and two elements:

aAnObeotStruotine aConaratoE lomantd aConoreieElamantB aConarateVisitor
L Anm s o
WimitOomormts s msntA  mO onoredes s msentdag

Opmratsorndd} |

{ |v.-..u rororete Bl mentB] et ono retsElsmentE)
‘ I-l L TR R Y

Consequences
Some of the benefits and liabilities of the Visitor pattern are as follows:
1. Visitor makes adding new operations easy.Visitors make it easy to addoperations that depend on

Acceptiniinlior T

the components ofcomplex objects. You can definea new operation over an object structuresimply by

adding a new visitor.

2. A visitor gathers related operations and separates unrelated ones.Related behavior isn't spread
over the classes defining the objectstructure; it's localized in a visitor. Unrelated sets of behavior
arepartitioned in their own visitor subclasses. That simplifies both theclasses defining the elements
and the algorithms defined in thevisitors.

3. Adding new ConcreteElement classes is hard.The Visitor pattern makes ithard to add new
subclasses of Element. Eachnew ConcreteElement gives rise to a new abstract operation on Visitor
anda corresponding implementation in every ConcreteVisitor class. Sometimes adefault

implementation can be provided in Visitor that can be inheritedby most of the ConcreteVisitors, but

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

this is the exception rather thanthe rule.

a. Visiting across class hierarchies.An iterator canvisit the objects in astructure as it traverses them
by calling theiroperations. But an iteratorcan't work across object structures with different types of

elements.

5. Accumulating state.Visitors can accumulate state as they visit each element in the
objectstructure. Without a visitor, this state would be passed as extraarguments to the operations
that perform the traversal, or theymight appear as global variables.

6. Breaking encapsulation.Visitor's approach assumes that the ConcreteElement interface is
powerfulenough to let visitors do their job. As a result, the pattern oftenforces you to provide
public operations that access an element'sinternal state, which may compromise its

encapsulation.
Implementation

Each object structure will have an associated Visitor class. This abstract visitor class declares a
VisitConcreteElement operation foreach class of ConcreteElement defining the object structure.
EachVisit operation on the Visitor declares its argument to be aparticular ConcreteElement,
allowing the Visitor to access theinterface of the ConcreteElement directly. ConcreteVisitor
classesoverride each Visit operation to implement visitor-specific behaviorfor the corresponding
ConcreteElement class.

The Visitor class would be declared like this in C++:

class Visitor {

public:
virtual void VisitElementA(ElementA*);
virtual void VisitElementB(ElementB¥*);
// and so on for other concrete elements
protected:
Visitor();
b

Here are two other implementation issues that arise when you apply theVisitorpattern:

1. Double dispatch. the Visitor pattern lets you add operations to classeswithout changing them.
Visitor achieves this by using a techniquecalled double-dispatch. It's a well-known technique. Infact,
some programming languages support it directly . Languages like C++ and Smalltalk supportsingle-

dispatch.

7" Semester, Dept of CSE Page: 11



Software Architecture and Design Patterns (18CS731)

2. Who is responsible for traversing the object structure?

A visitor must visit each element of the object structure. The questionis, how does it get there? We
can put responsibility for traversal inany of three places: in the object structure, in the visitor, or in

aseparate iterator object.

Sample Code

We will use Visitor to define operations for computing the inventory of materials and the total cost for a
piece of equipment. The Equipment classes are so simple that using Visitor isn't really necessary, but

they make it easy to see what'sinvolved in implementing the pattern.

class Equipment {public:
virtual ~Equipment();
const char* Name() { return _name; }
virtual Watt Power(); virtual
Currency NetPrice();
virtual Currency DiscountPrice();
virtual void Accept(EquipmentVisitor&);protected:
Equipment(const char*);
private:

j2

The Equipment operations return the attributes of a piece ofequipment, such as its power
consumption and cost. Subclasses redefine these operations appropriately for specific types of

equipment

The abstract class for all visitors of equipment has a virtualfunction for eachsubclass of equipment, as

shown next. All of thevirtual functions do nothing bydefault.

class EquipmentVisitor {

public:
virtual ~EquipmentVisitor();
virtual void VisitFloppyDisk(FloppyDisk*);virtual
void VisitCard(Card*);
virtual void VisitChassis(Chassis*);virtual void
VisitBus(Bus*);
[/l and so on for other concrete subclasses of Equipmentprotected:
EquipmentVisitor();

I3

Known
Uses

» The Smalltalk-80 compiler has a Visitor class called ProgramNodeEnumerator.It's used

7" Semester, Dept of CSE Page: 11



Software Architecture and Design (18CS73
primarily for algorithms that analyze source code.

» IRIS Inventor [Str93]is a toolkit for developing 3-D graphics
applications. Inventor represents a three-dimensional scene as a
hierarchy of nodes, each representing either a geometric object or an
attribute of one. Inventor does this using visitors called "actions."”

» To make adding new nodes easier, Inventor implements adouble-
dispatch scheme for C

» Mark Linton coined the term "Visitor" in the X Consortium'sFresco

Application Toolkitspecification

Related Patterns
Composite (183): Visitors can be used to apply an operation over an
objectstructure defined by theComposite pattern.
Interpreter (274): Visitor may be applied to do the interpretation.

Module-4

Interactiv
e system
and the

MVC

Architect

ure

4.1 Introduction
So far we have seen examples and case-studies involving relatively simple

software systems. This simplicity enabled us to use a fairly general step-by-
step approach, viz., specify the requirements, model the behavior, find the
classes, assign responsibilities, capture class interactions, and so on.

In larger systems, such an approach may not lead to an efficient design and it



Software Architecture and Design (18CS73
would be wise to rely on the experience of software designers who have

worked on the problem and devised strategies to tackle the problem.
For the problem of creating software systems, such a structure is provided by
choosing software architecture. We start by describing a well-known

software architecture called the Model-View—Controller or MVC pattern.

42 The MVC Architectural Pattern

The pattern divides the application into three subsystems: model, view, and
controller. The architecture is shown in Figure 4.1

The pattern separates the application object or the data,
which is termed the Model, from the manner in which it is
rendered to the end- user (View) and from the way in which

the end-user manipulates it (Controller).

In contrast to a system where all of these three functionalities are lumped
together , the MVC pattern helps produce highly cohesive modules with a
low degree of coupling. This facilitates greater flexibility and reuse. MVC
also provides a powerful way to organize systems that support multiple

presentations of the same information.



Software Architecture and Design (18CS73
1: Model : The model, which is a relatively passive object, stores the data.

object can play the role of model.

2: View : The view renders the model into a specified format, typically
something that is suitable for interaction with the end user. For instance, if the
model stores information about bank accounts, a certain view may display
only the number of accounts and the total of the account balances.

3: Controller : The controller captures user input and when necessary, issues
method calls on the model to modify the stored data. When the model

changes, the view responds by appropriately modifying the display.

In a typical application, the model changes only when user input causes the
controller to inform the model of the changes. The view must be notified
when the model changes. Instance variables in the controller refer to the
model and the view. Moreover, the view must communicate with the model,
so it has an instance variable that points to the model object. Both the
controller and the view communicate with the user through the UI. This
means that some components of the Ul are used by the controller to receive
input; others are used by the view to appropriately display the model and
some can serve both purposes . It is important to distinguish the Ul from the
rest of the system: beginners often mistake the Ul for the view. This is easy

error to make for two reasons. In most systems, due to the nature of the

T
/N

—L
N

desired look and feel and the technologies available, there is a single window



Software Architecture and Design (18CS73
in which the entire

Figure 4.1 The model-view-controller architecture

application is housed. This means that there has to be a common subsystem
that provides the functionality needed both for the view and the user
interface. The othersource of potential confusion is that the Ul presents to the
user an image of how thesystem looks, and this can be mistakenly construed
as the view. This interfacemustinclude components that are in fact part of
the controller. When we talk of MVCin the abstract sense, we are dealing
with the architecture of the system that lies behind the Ul; both the view and
the controller are subsystems at the same level of abstraction that employ
components of the Ul to accomplish their tasks. From a practical standpoint,
however, we have a situation where the view and the Ul are contained in a
common subsystem. For the purpose of designing our system, we shall refer
to this common subsystem as the view. The view subsystem is therefore
responsible for all the look and feel issues, whether they arise from a
human—computer interaction perspective (e.g., kinds of buttons being
used) orfrom issues relating to how we render the model. Figure 4.2 shows
how we might present the MVC architecture while accounting for these
practical considerations.

User-generated events may cause a controller to change the model, or
view, or both. For example, suppose that the model stored the text that is
being edited by theend-user. When the user deletes or adds text, the controller
captures the changes and notifies the model. The view, which observes the
model, then refreshes its display, with the result that the end-user sees the
changes he/she made to the data. In this case, user-input caused a change to
both the model and the view.

On the other hand, consider a user scrolling the data. Since no changes are
madeto the data itself, the model does not change and need not be notified.
But the view now needs to display previously-hidden data, which makes it
necessary for the viewto contact the model and retrieve information.

More than one view—controller pair may be associated with a model.
Whenever user input causes one of the controllers to notify changes to the
model, all associatedviews are automatically updated.

It could also be the case that the model is changed not via one of
thecontrollers, but through some other mechanism. In this case, the model
must notify all associatedviews of the changes.



Software Architecture and Design

AbstractClass

Oparatiov |}

i

= ConcreteSubclass

=7" Senf,
Crparagtion() O-—-——+

(18CS73

implementation
psaudocode

"E-Page (17




Software Architecture and Design (18CS73

Figure. 4.2 An alternate view of the the MVC architecture

The view—model relationship is that of a subject—observer. The model, as
the subject, maintains references to all of the views that are interested in
observing it. Whenever an action that changes the model occurs, the model
automatically notifies

all of these views. The views then refresh their displays. The guiding principle here
is that each view is a faithful rendering of the model.

4.2.1 Examples
1. Suppose that in the library system we have a GUI screen using which users
can place holds on books. Another GUI screen allows a library staff member
to add copies of books. Suppose that a user views the number of copies,
number of holds on a book and is about to place a hold on the book. At the
same time, a library staff member views the book record and adds a copy.
Information from the same model (book) is now displayed in different
formats in the two screens.
2. A second example is that of a mail sever. A user logs into the server and
looks at the messages in the mailbox. In a second window, the user logs in
again to the same mail server and composes a message. The two screens
form two separate views of the same model.
3. Suppose that we have a graph-plot of pairs of (x, y) values. The
collection of data points constitutes the model. The graph-viewing software
provides the user with several output formats—»bar graphs, line graphs, pie
charts, etc. When the user changes formats, the view changes without any
change to the model.

Implementation
As with any software architecture, the designer needs to have a clear idea
about how the responsibilities are to be shared between the subsystems. This
task can be simplified if the role of each subsystem is clearly defined.

e The view is responsible for all the presentation issues.
e The model holds the application object.
e The controller takes care of the response strategy.

The definition for the model will be as follows:

public class Model extends Observable {
// code
public void changeData () {
// code to update data



Software Architectl)Jre and Design (18CS73

setChanged (
notifyObservers (changeInf
o) ;

;



Softwarfe Architecture and Design (18CS73
}
Each of the views is an Observer and implements the update
method.

public class View implements Observer {
// code
public void update (Observable model, Object data) {
// refresh view using data
}
}

If a view is no longer interested in the model, it can be deleted from the
list ofobservers.

Since the controllers react to user input, they may send messages directly
to the views asking them to refresh their displays.

For each feature, we start with a detailed list of specifications, stated
clearly enough so that they can be classified as belonging to one of the three
categories. In general, there is always an initiation step for each operation;
the manner in which the user is to be shown the feature and the manner in
which it is invoked are partof the presentation. What the system should do
when the request is made is a part of the response strategy, and the controller
manages this part of the show. This strategy may involve interacting with the
user in tandem with making changes to theapplication object. What is needed
from the user is part of the response strategy, but how the system
communicates with the user is a presentation issue. Changes to the
application object are made by invoking the methods of model. As the
application object is modified, the display needs to be modified to reflect the
changes. Modifyingthe display is again a matter for presentation.

Clearly, there is a lot of entanglement here between the three parts, and it
is a challenge to keep everything separate. The controller invokes the
methods provided by the model so that the separation is relatively easy to
implement. There can be confusion around drawing a line between the
responsibilities of the view and the controller for reasons explained earlier.
Likewise, keeping the business logic away from the display (or model-view
separation) can be tricky in situations where there is a close relationship
between the stored data and the methods for rendering it. As we design and
implement a case-study in the following pages, we make decisions asvarious
situations arise. Although the philosophy behind this architecture is easily
stated, the details are best explained by example.

The approach we use to resolve this is to create a Ul with functionality to
serve the purpose of both the view and the controller. Display components



Software Architecture and Design (18CS73
will be available to the view, which invokes the appropriate display

commands. Components which capture events generated by user inputs are
configured to pass on the message to the appropriate subsystem; note that
events for some operations (like scrolling) are handled by the view, whereas
others (like add, delete) are sent to the controller.

Benefits of the MVC Pattern

1. Cohesive modules: Instead of putting unrelated code (display and data) in the
same module, we separate the functionality so that each module is cohesive.

2. Flexibility: The model is unaware of the exact nature of the view or controller it




Software Architecture and Design _ (18CS73
is working with. It is simply an observable. This adds flexibility.

3. Low coupling: Modularity of the design improves the chances that components
can be swapped in and out as the user or programmer desires. This also promotes
parallel development, easier debugging, and maintenance.

4. Adaptable modules: Components can be changed with less interference to the
rest of the system.

5. Distributed systems: Since the modules are separated, it is possible that the three
subsystems are geographically separated.

4.3 Analysing a Simple Drawing Program

We now apply the MV C architectural pattern to the process
of designing asimple program that allows us to create and label figures.
The purpose behind this
exercise is twofold:

e To demonstrate how to design with architecture in mind Designing with
architecture in mind requireS that we start with a high-level decomposition of
responsibilities across the subsystems. The subsystems are specified by the archi-

tecture. The designer gets to decide which classes to create for
each subsystem, but the responsibilities associated with these
classes must be consistent with the purpose of the subsystem.

e Tounderstand how the MVC architecture is employed Weshall follow the architec-
ture somewhat strlctlgl, i.e., we will try to have thrée clearly delineated subsystems
for Model, View, and Controller. Later on, we will explore and discuss variations

on this theme.

As always, our design begins with the process of collecting
requirements.

4.3.1 Specifying the Requirements

Our initial wish-list calls for software that can do the following.

1. Draw lines and circles.
2. Place labels at various points on the figure; the labels are strings. A separate
command allows the user to select the font and font size.
3. Save the completed figure to a file. We can open a file containing a figure and
edit it.
4. Backtrack our drawing process by undoing recent operations.
Compared to the kinds of drawing programs we have on the market, this



Software Architecture and Design o (18CS73
looks too ftrivial! Nonetheless, it is sufficient to show how the

responsibilities can be divided so that the MVC pattern can be applied.
What we shall also see, later on, is how new features can be added without
disrupting the existing classes.

In order to attain this functionality, the software will interact with the user.
We need to specify exactly how this interaction will take place. It should, of
course, be



Software Architecture and Design (18CS73
user-friendly, fast, etc., but as in earlier examples, these non-functional

requirementswill not be the focus of our attention. Without more ado, let us
adopt the following ‘look and feel:’

»  The software will have a simple frame with a display panel on which the figure will
be displayed, and a command panel containing the buttons. There will be buttons
for each operation, which are labeled like Draw Line, Draw Circle, Add Label, etc. The
system will listen to mouse-clicks which will be employed by the user to specify
points on the display panel.

» The display panel will have a cross-hair cursor for specifying points and a_
(underscore) for showing the character insertion point for labels. The default
cursor will be an arrow.

»  The cursor changes when an operation is selected from the command menu. When
an operation is completed, the cursor goes back to the default state.

» To draw a line, the user will specify the end points of the line with mouse-clicks.
To draw a circle, the user will specify two diametrically opposite points on the
perimeter. For convenient reference, the center of each circle will be marked with a
black square. To create a label, the starting point will be specified by amouse-click.

4.3.2 Defining the Use Cases
Wecan nowwrite the detailed use cases for each operation. The first one, for
drawinga line, is shown in Table4.1.

Actions performed by the actor Responses from the system

1. The user clicks on the praw Line button in the
command panel

2. The system changes the cursor to a cross-hair

3. The user clicks first on one end pointand
then on the other end point of the line to be

drawn
4. The system adds a line segment with thetwo
specified end points to the figure beingcreated.
The cursor changes to the default
Table 4.1 Use-case table for drawing a line
Actions performed by the actor Responses from the system

1. The user clicks on the Add Label button in the
command panel

2. The system changes the cursor to a
cross-hair cursor

3. The user clicks at the left end point of the
intended label

4. The system places a_ at the clicked location
5. The system waits for the user response




Software Architecture and Design (18CS73
5. The user types a character or clicks the
mouse at another location

6. If the character is not a carriage return the
system displays the typed character followed
by a_, and the user continues with Step 5; in
case of a mouse-click, it goes to Step 4;
otherwise it goes to the default state

Table 4.2 Use-case table for Adding aLabel
The use case for drawing a circle can be doneanalogously.

To give the system better usability, we allow for multiple labels to be
added with the samecommand. To start the process of adding labels, the user
clicks on the command button. This is followed by a mouse-click on the
drawing panel, following which the user types in the desired label. After
typing in a label, a user can either click on another point to create another
label, or type a carriage return, which returns the system to the default state.
These details are spelled out in the use case in Table4.2. The system will
ignore almost all non-printable characters. The exceptions are the Enter and
Backspace keys. A label may contain zero or more characters.

We also have use cases for operations that do not change the displayed
object. An exampleof this would be when the user changes the font, shown in
Table4.3.

The requirements call for the ability to savethe drawing and open and edit the
saved drawings. The use cases for saving, closing and opening files are left as
exercises. In order to allow for editing we need at least the following two
basic operations: selection and deletion. The use Case select an em IS detailed in
Table4 4.

There are some details here that need to be fleshed out in later stages. We
have not specified how the system would indicate the change to the selection
mode. We could do this by changing the cursor or altering the display in
some other way. This use case requires that the display should indicate which
items have been selected. This can be done by drawing these items in a
different colour.

It is possible that the user’s click does not fall on any item; in that case, the
system simplyignores the mouseclick and returns to the default mode.

Actions performed by the actor Responses from the system

1. The user clicks on the Change Font button in
the command panel

2. The system displays a list of all the fonts
available




Software Architecture and Design (18CS73

3. The user clicks on the desired font

4. The system changes to the specified font and
displays a message to that effect

Table 4.3 Use-case table for change Font
Actions performed by the actor Responses from the system

1. The user clicks on the select button in the
command panel

2. The system changes the display to the
selection mode




Software Architecture and Design (18CS73

3. The user clicks the mouse on the drawing

4. If the click falls on an item, the system adds
the item to its collection of selected items and
updates the display to reflect the addition. The
system returns the display to the default mode

Table 4.4 Use-case table Select an Item for
Deletion will be done by having a button in the GUI that the user can
click; whenever this button is clicked, all the selected items are deleted. The
use case for this is left as an exercise.

4.4 Designing the System

The process of designing this system is somewhat different from our earlier
case studies owing to the fact that we have selected an architecture. Our
architecture specifies three principal subsystems, viz., the Model, the View
and the Controller. We have a broad idea of what roles each of these play,
and our first step is to definethese roles in the context of our problem. As we
do this, we look at the individual usecases and decide how the responsibilities
are divided across the three subsystems. Oncethis is takencare of, welook into
thedetails ofdesigningeach ofthesubsystems.

4.4.1 Defining the Model

Our next step is to define what kind of an object we are creating. This is
relatively simple for our problem; we keep a collection of line, circle, and
label objects. Each line is represented by the end points, and each circle is
represented by the X- coordinates of the leftmost and rightmost points and the
Y -coordinates of the top and bottom points on the perimeter (see Figure.
4.3).

For a label, the model stores the coordinate’s starting position, the text,
and the style and size of the characters in the string. The collection is
accessed by the view when the figure is to be rendered on the screen. The
model also provides mech anisms to access and modify its collection objects.
These would be methods like addItem (Item), getItems (), etc.

Defining the Controller
The controller is the subsystem that orchestrates the whole show and the
definition of its roleis thus critical. When the user attempts to execute an



Software Architecture and Design _ (18CS73
operation, the input is received by the view .the view then communicates this

to the controller. This communication can be effectedby invoking the public
methods of the controller. Let us examine in detail the various
implementation steps for the processes described in the use cases.

Drawing a Line

. The user starts by clicking the praw line button, and in response, the system changes the
cursor. Clearly, changing the cursor should be a responsibility of the view, since that is where
we define the look and feel. This would imply that the view system listen to the button click.
The click indicates that the user has initiated an operation that would change the model.



Software Architecture and Design (18Cs7r3
Since such operations have to be orchestrated through the controller, it is

appropriate that the Controller be informed. The controller creates a line
object (with both ndpoints unspecified).

Figure. 4.3 Representing a circle and a label

. The user clicks on the display panel to indicate the first end point of the line. We now
need to designate a listener for the mouse clicks. This listener will extract the
coordinates from the event and take the necessary action. Both the view and the
controller are aware of the fact that a line drawing operation has been initi- ated. The
question then is, which of these subsystems should be responding to the mouse-click?
Having the controller listen directly to the mouse-clicks seems to be more efficient,
since that will reduce the number of method invocations. However there are several
reasons why this is not a good choice. First, the meth- ods/interfaces (e.g.,
MouseListener in Java) to be implemented depend on the manner in which the
view is being implemented. This means that the con- troller is not independent of the
view, thus hurting reuse. A second reason is that we can have multiple ways to input the
points. For instance, when trying to draw a precise figure, a user may prefer to specify
the points as coordinates through some kind of dialog, instead of clicking the mouse.
These accommodations are part of the look and feel, and do not belong in the
controller. Finally, we have the problem of reading and interpreting the input. In our
particular situation, this manifests itself as the process of mapping device coordinates
to the image coordinates. Most of the graphical display tools available nowadays use a
coor- dinate system where the origin corresponds to the top-left corner of the display

rectangle, with X coordinates increasing from left to right and Y coordinates
increasing from top to bottom (also known as device coordinates). Programs
that generate and use graphics often prefer the standard Cartesian coordinate
system. Thus we might have a situation where the model isbeing created with
Cartesian coordinates, whereas mouse clicks and graphical output must use
device coordi- nates and points have to be mapped from one system to the
other. The conversion of Cartesian coordinates to device coordinates is best
done in the view since it knows and is responsible for the nature and format
of the output (points specified as device coordinates). The reverse operation
of converting device coordinates of input points toCartesian coordinates must
also, therefore, be done by the view, which means that the view must capture



Software Architecture and Design (18CS73
the input. Therefore, although a perfor- mance penalty is incurred, we

favour the implementation where the mouse-click is listened to in the view.
The view then communicates these coordinates to the controller, after
performing any transformation or mapping that may be needed. At this point
we need to decide how the system would behave during the period between
the clicks. For instance, should the point for the first click be



Software Architecture and Design (18CS73
highlighted in any way? Since the use case does not specify anything, we can

ignore this issue for the time being, i.e., no change happens until both end
points are clicked.

3. The user clicks on the second point. Once again, the view listens to the click and
communicates this to thecontroller. On receiving these coordinates, the controller
recognises that the line drawing is complete and updates the line object.

4. Finally, the model notifies the view that it has changed. The view then redraws
the display panel to show the modified figure.

View

— Actor Controller
i
i
i

i
S
1

Figure. 4.4 Sequence of operations for drawing a line

This sequence of operations across the three subsystems can be captured by a
high- level sequence diagram as shown in Figure. 4.4. Note that unlike the
sequence diagrams in earlier chapters, this does not spell out all the classes
involved or the names of the methods invoked.

Drawing a Circle

The actions for drawing a circle are similar. However, we now have some
additional processing to be done, i.e., the given points on the diameter must
be converted to the the fourinteger values, as explained in Figure.4.3. Note
that this requires a mapping to convert the input to the form required by the



Software Architecture and Design _ (18CS73
model. This can be performed in the controller, since these representations

areequivalent.



Software Architecture and Design (18CS73
Adding a Label

This operation is somewhat different due to the fact that the amount of data
is not fixed. The steps are as follows:

1.

2.

The user starts by clicking the Add Label button. In response, the system changes
the mouse-cursor, which, as before is the responsibility of the view.

The user clicks the mouse, and the system acknowledges the receipt of the mouse
click by placing a_ at the location. This would result in changing what the drawing
looks like. As decided earlier, we will maintain the property that the view is a
faithful rendering of the model. The view therefore notifies the
controller that the operation has been initiated, and the controller
modifies the model. One issuethat we have to resolve is that of
assigning the appropriate size and style to thecharacters in the
label. To implement this, we have to address the following:

e Which subsystem ‘remembers’ the current style and size? Since the user cannot
be expected to specify the size and style with each character, these have to be
stored somewhere. For our situation, we shall assume that these are stored in

the view and passed on to the controller when the label
construction operationis initiated.
e When do the changes to size and style take effect? To simplify our system, we

assume that these will take effect for the next label that is créated. What this
means is that the style and size have to be uniform for any given label, and if a

change is made to any of these while we are in the process of
creating a label,these changes will not take immediate effect.
The user types in acharacter. Once again, the view listens to and gets the input from

the keyboard, which is communicated to the controller. Once again the controller
changes the model, which notifies the view.

. The user clicks the mouse or enters a carriage-return. This is appropriately inter-

preted by the view. In both cases, the view informs the controller that the addition
of the label is complete. In case of a mouse click, the controller is also notified
that a new operation for adding a label has been initiated.

This sequence of steps is explained in Fig. 4.5. Note that the view interprets the key-
strokes: as per our specifications ordinary text is passed on directly to the controller,
control characters are ignored; carriage-return is translated into a command, etc.
All this is part of the way in which the system interacts with the user, and therefore
belongs to the view.



Software Architecture and Design (18CS73

_F,HH:HHF_W

Figure. 4.5 Sequence of operations for adding a label

Sharing Responsibilities between the View and the Controller

When we employ the MVC architecture, there is often a gray
area between the responsibilities of the controller and those of
the view, particularly for thekind of software discussed in this
case-study. Issues that fall in this area can be confusing to the
beginner, particularly since widely varying opinions have been
expressed. Some of these issues have come up in this section
and need clarification.

Accepting user input In our approach above, all user input is
received bythe view. Indeed, the view is the only mechanism
through which the user caninteract and the view parses all the
input that comes in. The idea here is that the system as a whole
be ‘UI agnostic’, i.e., the design of the system does notdepend
on how the Ul has been implemented.

Consider the situation where the user gives a command. This
is done by a button click. It is tempting to let the controller, or
one of its components, listen to the click and take action.
However, this creates problems if the Ul is changed so that the



Software Architecture and Design (18CS73
same commands can instead be given by keystrokes. In such a

situation, a change in the Ul, or even in the look and feel, can
force changes in the controller. In addition, there could be
situations where the same operationcan be initiated in multiple
ways. If the controller has to accommodate all of these, it adds

to the complexity of the controller and causes tight coupling.
Cr)]nce an operation has been initiated, we have the issue of accepting
the



Software Architecture and Design (18CS73



Software Architecture and Design (18CS73

data. Once again, while some designers have argued that the data be received
in the controller, this approach is fraught with problems. The data could be in
one of several formats. For instance, a Ul designer might want to
accommodate for users to type in coordinate locations instead of clicking
with the mouse. (This could be important for drawing precise geometric
figures.) Having the controller deal with multiple formats is not desirable. A
second, more serious issue is that when the data needs some ‘correction’ to
adjust for the display. For instance, consider a situation where the figure is
being drawn with Cartesian coordinates due to the nature of the application.
The mouse-click specifies the value in coordinates with reference to the
object that is being used for the display (in Java, this would be the JPanel,
ora JScrollPane), which will have to be mapped to the Cartesian values.
Doing this mapping in the controller would mean exposing the controller to
all the details of the components used by the view. The important thing to
keep in mind is that the view is providing the user with several input
mechanisms, and therefore should be responsible for receiving and
interpreting the data. The task of accepting and standardising user input is
therefore the responsibility of the view.

Selection and Deletion

The software allows us to delete lines, circles, or labels by selecting the item and
then invoking the delete operation. These shall be treated as independent
oper- ationssince selection can also serve other purposes. Also, we can invoke
selection repeatedlyso that multiple items can be selected at any given time.

When an item is selected, it is displayed in red, as opposed to black. The
selection is done by clicking with the arrow (default) cursor. Lines are selected by
clicking on one endpoint, circles are selected by clicking on the center, and labels

are selected by clicking onthe label.
The steps involved in implementing this are as follows:

1. The user gives the command through a button click. This is followed by a mouse click
to specify the item. Both of these are detected in the view and communicated to the
controller.

2. In order to decide what action the controller must take, we need to figure out how the
system will keep track of the selected items. Since the view is responsible for how these
will be displayed (in red, for instance) the view must be able to recognise these as
selected when updating the display. Since the view gets the items from the model, it would
seem appropriate that the model have a mechanism to flag the selected items. This can be
done by having a tag field for each item, or simply by moving the selected items to a



Software Architecture and Design (18CS73
separate container. We shall use the latter.

3. The next step is to iterate through the (unselected) items in the model to find the item (if
any) that contains the point. Since the model is to be used strictly as a repository for the
data, the task of iterating through the items is done in the controller, which then invokes
the methods of the model to mark the item as



Software Architecture and Design (18CS73

selected.

4. Model notifies view, which renders the unselected items in the default colour (black) and
the selected items in red. View gets an enumeration of the two lists separately and uses
the appropriate colour for each. Note that model only stores a separate list of the selected
items. It is the view that decides how the two lists are to be rendered.

Deletion is a simpler operation. The button click is heard in the view and
passed on to the controller, which simply requests the model to delete all
selected items.

4.4.2 Saving and Retrieving the Drawing
The use cases for the processes of saving and retrieving are simply described: the user
requests a save/retrieve operation, the system asks for a file name which the user provides
and the system completes the task. This activity can be partitioned between our
subsystems as follows:

1. The view receives the initial request from the user and then prompts the user to
input a file name.

2. The view then invokes the appropriate method of the controller, passing the file
name as a parameter.

3. The controller first takes care of any clean-up operation that may be required.
For instance, if our specifications require that all items be unselected before the
drawing is saved, or some default values of environment variables be restored,
this must be done at the stage. The controller then invokes the appropriate method
in the model, passing the file name as a parameter.

4. The model serializes the relevant objects to the specified file.

This completes the first step of distributing the responsibilities across the
three sub- systems. Note that unlike the earlier case studies, we did not look
for classes and methods and try to create a class interaction diagram right
away. This would be fairly typical when we are designing a larger software
system with some advance notice about the kind of architecture being
employed. As we progress through the details, we might also realise that our
partitioning of responsibilities across the subsystems may have to shift a little
due to other considerations. This is not unusual, since the architecture only
gives us broad guidelines, andnot a detailed design.

4.5 Design of the Subsystems

In this stage, the classes and their responsibilities are identified and we get a
moredetailed picture of how the required functionality is to be achieved.



Software Architecture and Design (18CS73

4.5.1 Design of the Model Subsystem
we know that the model should have methods for supporting the following
operations:



Software Architecture and Design (18CS73

Adding an item

Removing an item

Marking an item as selected

Unselecting an item

Getting an enumeration of selected items
Getting an enumeration of unselected items
Deleting selected items

Saving the drawing

Retrieving the drawing

N~ WNE

©

The class diagram is shown in Figure 4.6.

The class Item represents a shape such as line or label and enables
uniform treatment of all shapes within a drawing.

Since the methods, getItems () and getSelectedItems () return
an enu- meration of a set of items.The view uses these methods to get the
objects from the model as an enumeration of the items.

Figure. 4.6 Class diagram for
model —




Software Architecture and Design (18CS73

The method updateView is used by the controller to alert the model
that the display must be refreshed. It is also invoked by methods within the
model whenever the model realizes that its data has changed. This method
invokes a method in the view to refresh the display.

4.5.2 Design of Item and Its Subclasses

Clearly, Itemwill have several subclasses, one for each shape. Each
subclass will store attributes that are relevant to the corresponding shape.

Rendering the items Rendering is the process by which the data stored in
the model is displayed by the view. Regardless of how we implement this,
the actual details of how the drawing is done are dependent on the following
two parameters:

» Thetechnology and tools that are used in creating the Ul For instance, we
are using the Java’s Swing package, which means that our drawing
panel is a JPanel and the drawing methods will have to be invoked on
the associated Graphics object.

» The item that is stored If a line is stored by its equation, the code for
drawing it would be very different from the line that is stored as two
end points.

The technology and tools are known to the author of the view, whereas the structure
of the item is known to the author of the items. Since the needed information is in
two different classes, we need to decide which class will have the responsibility for
implementing the rendering.

We have the following options:

Option 1 Let us say that the view is responsible for rendering, i.e., there is
code in the view that accesses the fields of each item and then draws them.
Since the modelis storing these items in a polymorphic container, the view
would have to query the type of each item returned by the enumeration in
order to choose the appropriate method(s).

Option 2 If the item were responsible, each item would have a render
method that accesses the fields and draws the item. The problem with this is
that the way an object is to be rendered often depends on the tools that we
have at our disposal. Forinstance, consider the problem of rendering a circle:
a circle is almost always drawn as a sequence of short line segments. If the
only method given in the toolkit is that fordrawing lines, the circle will have



Software Architecture and Design (18CS73
to be decomposed into straight lines. In addition to the set of tools, there are
other specific features that the technology has. Using the Swing package in
Java, for instance, implies that all the drawing is done by invoking the
methods on the Graphicsobject associated with the drawing panel.



Software Architecture and Design (18CS73

+render () : void

Figure. 4.7 The item class and its subclasses

At this point it appears that we are stuck between two bad choices! However, a
closer look at the first option reveals a fairly serious problem: we are querying each
object in the collection to apply the right methods. This is very much at odds with
the object-oriented philosophy, i.e., the methods should be packed with the data that
is being queried. This really means that the render method for each item should
be stored in the item itself, which is in fact the approach of the second option.
The structure of the abstract Item class and its subclasses are shown in

Fig. 4.7.
Catering to Multiple Ul Technologies

Swing is just one package for drawing. Before it was developed, there was
(and still is) the AWT (Abstract Windowing Toolkit) package available to
Java programmers. Let us assume that we have available two new toolkits,
which are called, for want of better names, HardUI and EasyUT,
Essentially, what we want is that each item has to be customised for each
kind of U, which boils down to the task of having a different render

method for each Ul. One way to accomplish this is to use inheritance.

To adapt the design to take care of the new situation, we have the
Circle

class implement most of the functionality for circle, except those that
depend on the Ul technology. We extend Circle to implement the
SwingCircle class.Similar extensions are now needed for handling the
new technologies, HardUT andEasyUI. Each of the three classes has code
to draw a circle using the appropriate Ul technology. The idea is shown in
Figure.4.8.

In each case, the render method will decompose the circle into smaller
compo-nents as needed, and invoke the methods available in the Ul to render

L — —— £ 3

“7~Semester, Dept of - Page 1




Software Architecture and Design (18CS73

each compo- nent. In addition, each method would have to get any other
contextual information. For instance, with the Swing package, the render
method would get the graphics object from the view and invoke the
drawOval method. The code for this could look something like this:

“7~Semester, Dept of - Page 1



Software Architecture and Design (18CS73

Figure. 4.8 Catering to multiple Ul technologies

public class SwingCircle extends Circle {
// circle class for SwingUI
public void render () {
Graphics g = (View.getInstance()) .getGraphics();
g.drawOval (/* parameters */);
}
}

The actual parameters for drawOval would depend on any mapping
needed, but would be computed using quantities stored in the Circle
object. In addition to the Graphics object, we may need several other
pieces of information from the context, such as the size of the drawing area,
etc. The model could potentially employseveral types of items, each of which
has a corresponding abstractclass.

Clearly, we need abstract classes for implementing the technology-
independent parts of lines (Line) and labels (Label). They are extended by
classes such as SwingLabel, SwingLine, EasyLabel, etc. This
extension adds another six classes. Each abstract class ends up with as many
subclasses as the number of Uls that we have to accommodate.

Thenumber of classesneeded to accommodate such a solution is given
by:

Number of types of items x Number of Ul packages
L — —— £ 3

“7~Semester, Dept of - Page 1




Software Architecture and Design (18CS73

As is evident from the pictorial view of the resulting hierarchy (see Figure.
4.9), this causes an unacceptable explosion in the number of classes.

“7~Semester, Dept of - Page 1



Software Architecture and Design (18CS73

Figure. 4.9 Class explosion due to multiple Ul implementations

Next, consider the situation where items are being created in the controller.
Some kind of conditional will be needed to decide which concrete class
should be instan- tiated, and this requires the code in the controller to be
aware of the Ul package thatwe are using.

A third and more subtle point is that of software upgrades. Suppose we
create a version of our drawing program that supports the HardUI package
and we use that to create a figure. All the items created in the model will
belong to the HardUIsubclasses, and can be used only with a system where the
HardUI package is available. If a later version of the software does not
support HardUI (or we move the files toa system that does not support it),
we cannot access the old files anymore. If the objects created in the model
were independent of the type of Ul, this problem couldbe avoided.

Can all these problems be circumvented? What we have here are two
subsystems viz., the model and the view, each of which has its own
classification viz., the types of items and the types of Uls. Weare creating
objects that account for both of thesevariations. Since the ITtem subclasses
are being created in the model, the types of items are an internal variation.
On the other hand, the subclasses of Circle, Line, and Label(such as
HardCircle) are an externalvariation. Thestandardapproach for this is to
factor out the external variations and keep them as a separate hierarchy, and
then set up a bridge between the two hierarchies. This standard approach is
therefore called the bridge pattern.

Figure 4.10 describes the interaction diagram between the classes and
visually represents the bridge between the two hierarchies.

Since the only variation introduced in the items due to the different Uls is
the manner in which the items were drawn, this behaviour is captured in the
UIContextinterface as shown in Figure.4.11.

£
[ ——

“7~Semester, Dept of - Page :



Software Architecture and Design (18CS73

| —— ] [ ] void

Figure. 4.10 Interaction diagram for the bridge pattern

e faGess

UlContext

srawiline:Line) : void

+Srawiitemiltem) ¢ void

Figure. 4.11 Ul Context interface
Using the Bridge Pattern

The intent of the bridge pattern is as follows: Decouple an abstraction from its
implementation so that two can vary independently. In our example, the abstraction is
the abstract class Item., The render method of this abstraction has different
implementations for different Uls. Using inheritance to allow for the different
implementations has the following drawbacks:
The abstractions and implementations cannot be modified and reused
independently. If the variations in the implementation are introduced
from two independent sources,
keeping them in the same hierarchy could have a multiplicative effect on
the number ofconcrete classes.

» The bridge pattern takes care of these problems avoiding a permanent binding between
the two. This gives our design the following desirable properties:

> Both abstraction and implementation are independently extensible (Ul Context and
items change indepently).

» Changes in the implementation do not affect the clients.

> Allows the implementation to be completely hidden from clients

» Reduces the number of classes.

» Multiple classes can share the same representation.

= =S -

“7~Semester, Dept of - Page 1




Software Architecture and Design (18CS73
NE Of the guramg prmcipres -

“Favour objects composition over class inheritance”.

“7~Semester, Dept of - Page 1



Software Architecture and Design (18CS73

Note that the total number of classes is now reduced to
Number of types of items + Number of Ul packages

Reflecting on the design The UIContext interface has a separate method
for drawing each of the shapes, thereby establishing a one-to-one mapping
with the shapes (circle, line, label). In general, such a one-to-one mapping is
neither necessarynor realistic.

Assume that we want to start supporting a new shape, say
Triangle, with the obvious semantics, in our drawing program. This is
clearly an example of a change that one should expect in a drawing program
and, within reason, it shouldimpact as few interfaces and classes as possible.
The class Triangle can then bewritten as below.

public class Triangle extends Item {
private Line linel;
private Line line2;
private Line line3;
// Fields, constructor, and other methods
public void render () {
uiContext.draw (linel) ;
uiContext.draw (line
2);
uiContext.draw (line
3) 7
}
}

Similarly, we could support arbitrarypolygons.

This demonstrates a couple of things. For one, it justifies the use of the bridge
pattern in our design. We are varying the Item hierarchy while requiring no
changes at all to the UIContext hierarchy.

In addition, it shows that the methods of UIContext can be quite
‘general purpose’ and not tied exclusively to one specific shape.
Suppose we restrict UIContext to the following:

public interface UIContext ({
public void draw(Point pointl, Point point2); // for Line
public void draw(String string, RenderInformation information);
// for Label
}
As the reader might guess, draw with the two Point parameters renders
a line connecting the given points. The other draw method draws a sequence
of characterswith information such as the font and font size specified in an as
yet unimplementedclass named RenderInformation. Clearly, the Line

class’s render methodcan call the first draw method of UIContext and



Software Architecture and Design (18CS73
the label can be drawn by callingthe second draw method. We do not require
any additional functionality, since anyshape can be drawn by decomposing it
into a large number of lines. Since there is no method to draw a circle, the

Circle class must repeatedly invoke the first draw method to render the
circle.



Software Architecture and Design (18CS73

Employing option 1 Assume that rather than assigning the responsibility of
draw- ing an Item object to the object itself, we have the view draw all
the items. This could be accomplished by having methods such as
draw (Line 1line) and draw(Circle «circle) in the view
subsystem. Every view will potentially have a different implementation of
these methods. To render the items, a reference to the current view is
obtained and the appropriate draw method is then called on that object.

While the methods that result from employing Option 1 are essentially the
same as we get using the bridge pattern, there is a difference in that the
bridge pattern employs a different class for each Ul technology whereas
Option 1 employs a set ofdraw methods for each view.

4.5.3 Design of the Controller Subsystem
We structure the controller so that it is not tied to a specific view and is
unique to the drawing program.

The view receives details of a shape (type, location, content, etc.) via mouse
clicksand key strokes. As it receives the input, the view communicates that to the
controller through method calls. This is accomplished by having the fields for
the following purposes.

1. For remembering the model;
2. Tostorethe current line, label, or circle being created. Since we have three shapes,

this would mean having three fields.
When the view receives a button click to create a line, it calls the controller
methodmakeLine. To reduce coupling between the controller and the view,
we should allow the view to invoke this method at any time: before receiving
any points, after receiving the first point, or after receiving both points. For
this, the controller has three versions of the makeLine method and keeps
track of the number of points independently of the view.

The execution of makeLine causes the line to be part of the model. The
view can set the endpoints of the line via the setLinePoint method.

The approach to add a label is similar to the one for adding a line. For a
label, remember that by pressing the backspace the user can delete a
character, so we provide a method removeCharacter for this purpose.

The controller also supplies a method (selectItem)that the view can call
when it receives the command to select an item. The controller searches
through the entire list of unselected items and determines if one of them is
selected, and if so, it movesthe item from the list of unselected items to the



~ Software Architecture and Design (18CS73
list of selecteditems.

The rest of the methods are for deleting selected items and for storing and
retriev-ing the drawing and are fairly obvious. The class diagram is shown in
Fig.4.12.

To implement the saving and retrieval of files, the only objects to be
serialized are the list(s) of the Item objects, which is a straightforward
process. However, one of our stated goals is that of allowing a file to be

retrievable even if the software has

been modified so that we have a different version of the view, or if new
featuresare




Software Architecture and Design (18CS73

added. This means that in the new version of the software the concrete
UIContext may be different from the one that was used to create the items
in the serialized list. One solution to this could be to set uiContext to
null in all the objects being stored to disk and then reset these when the
objects are read from disc. This solution is inelegant and some what
worrisome in that the objects are being modified when saved and retrieved.

This is a reason why we have made Item an abstract class (instead of an
interface). This enables us to store UIContext asa static field in this class,
along with the

We leave the circle implementation as an exercise, so we end up having only two fields in our
design.

+OpenFi le ‘- ——— ‘ . ‘." ‘ .

Figure. 4.12 Controller class diagram

static method setUIContext to modify it. The UIContext object is
thus not apart of the object that is saved. This is consistent with the basic
idea of the Bridge pattern, which calls for separation between the items and
the manner in which theyare rendered.



Software Architecture and Design (18CS73

4.5.4 Design of the View Subsystem

The separation of concerns inherent in the MVC pattern makes the view
largely inde- pendent of the other subsystems. Nonetheless, its design is
affected by the controllerand the model in two important ways:

1. Whenever the model changes, the view must refresh the display, for which the
view must provide a mechanism.
2. The viewemploys a specific technology for constructing the Ul. The correspond-
ing implementation of UIContextmust be made available to Item,
The first requirement is easily met by making the view implement the
Observerinterface; the update method in the View class, shown in the
class diagram in Fig. 4.13, can be invoked for this purpose.

The issue regarding UIContext needs more consideration. The view
consists ofa drawing panel, which extends JPaneland needs to be updated
using the appro- priate instance of UIContext. A major question that arises
is as to how and whenthis variable is to be set in Item. This can be achieved
by having a public method, say setUIContext, in the model that in turn

invokes the setUIContext on Item.

However, the time when we have to ensure that we are using the right
instance of

UIContext is just before a drawing is rendered by the view. Also, it is the
view that knows which specific instance of UIContext is to be used in
conjunction with itself. A logical way of doing this, therefore, would be to
keep track of the appropriate UIContext in the view and invoke the
setUIContext method inthe model just before refreshing the panel that
displays the drawing. In the Swing package, repainting is effected in the
paintComponent method.

With multiple views, invoking the setUIContext method is
problematic. Con-sider: more than one view might have scheduled repainting
the screen, which would cause all of them to be executing
paintComponent (or similar drawing method). If one of the views updates
the UIContext field in the model while another is in the middle of painting
the screen, chaos would result. This can be overcome by viewing the
repainting code as a criticalsection.

Accepting input We have already decided that the user will issue commands
by clicking on buttons. In the current implementation, we will assume that
coordinate information (endpoints of lines, starting point of labels, etc.) will



Software Architecture and Design (18CS73
be specified by



Software Architecture and Design

(18CS73

iew

(source : Chissrvabl : Untect): wnm

Figure. 4.13 Basic structure of the view class

Figure. 4.14 Organization of the classes to add labels

clicking on the panel. To catch these clicks, we need a class that acts as a

mouse listener,

which

in Java demands the implementation of the

MouseListener*inter-face.
Commands to create labels, circles, and lines all require mouse listeners.



~ Software Architecture and Design (18CS73
Since the behaviour of the mouse listener is dependent on the command, we

know from previous examples in the book that a truly object-oriented design
warrants a separate



Software Architecture and Design (18CS73

class for capturing the mouse clicks for each command. Since there is a one-
to-one correspondence between the mouse listeners and the drawing
commands, we have the following structure:

1. For each drawing command, we create a separate class that extends JButton,
For creating labels, for instance, we have a class called LabelButton. Every
button is its own listener.

2. For each class in (1) above, we create a mouse listener. These listeners invoke
methods in the controller to initiate operations.

3. Each mouse listener (in (2) above) is declared as an inner class of the correspond-
ing button class. This is because the different mouse listeners are independent
and need not be known to each other.

The idea is captured in Fig. 4.14. The class MouseHandler extends the
Java classMouseAdapter and is responsible for keeping track of mouse
movements and clicks and invoking the appropriate controller methods to set
up the label. In addition to capturing mouse clicks, the addition of labels
requires the capturing of keystrokes. The class KeyHandler accomplishes
this task by extending KeyAdapter,

In another implementation, the view may choose to have other listeners
that keeptrack of events like resising the window, zooming-in, etc. These do
not affect the model and can be handled by redrawing the figure.

If the user abandons a particular drawing operation, we could be in a
tricky situation where there is more than one MouseHandler object
receiving mouse clicks and performing conflicting operations such as one
object attempting to createa line and another trying to add a label. To prevent
this, we have two mechanisms inplace.

1. TheKeyAdapter classalso implements FocusListener to know when key
strokes cease to be directed to this class.

2. The drawing panel ensures that there is at most one listener listening to mouse
clicks, key strokes, etc. This is accomplished by overriding methods such as
addMouseListener and addKeyListener,

4.6 Getting into the Implementation
4.6.1 Item and Its Subclasses

This class I temis abstract and its implementation is as follows:



Software Architecture and Design (18CS73

import java.io.*;
import java.awt.*;
public abstract class Item implements Serializable {
protected static UIContext uiContext;
public static void setUIContext (UIContext uiContext) {
Item.uiContext = uiContext;



Software Architecture and Design (18CS73

}
public abstract boolean includes (Point point);

protected double distance(Point pointl, Point point2) ({
double xDifference = pointl.getX() - point2.getX();
double yDifference = pointl.getY() - point2.getY();
return ((double) (Math.sqgrt (xDifference * xDifference +

yDifference * yDifference)));

}

public void render () {
uiContext.draw (this);

}

}

The UIContext and its significance were discussed earlier in the context of
usingthe bridge pattern. The includes method is used to check if a given
point selectsthe item.

The Line class looks something like this:

public class Line extends Item {
private Point pointl;
private Point point2;
public Line (Point pointl, Point point2) {

pointl;
point2;

this.pointl
this.point2

}

public Line (Point pointl) {
this.pointl = pointl;

}

public Line() {

}

public boolean includes (Point point) {

return ((distance (point, pointl ) < 10.0) || (distance(point, point2)
< 10.0));
}
public void render () {

uiContext.draw (this);

}

// setters and getters for the two points

}

The class provides three constructors. A client may thus construct a Line
object without knowing either endpoint, or by specifying one point, or after
gathering bothendpoints.

Unlike HardUTI and EasyUI, which are ‘imaginary’ UI technologies,
we can readily construct an implementation of UIContext for the Java
Swing technology.

public class SwingUI implements UIContext {
private Graphics g;
// Any other fields to hold context variables
public void setGraphics (Graphics graphics) {



Software Architecture and Design (18CS73

g = graphics;
}

// any other methods to set context variables



Software Architecture and Design (18CS73

public void draw(Circle circle) {
g.drawOval (/* parameters */);

}

public void draw(Line line) {
g.drawLine (/* parameters */);

}

public void draw (Label label) {
g.drawString (/* parameters */);

}

public void draw(Item item) {
// error message

}

}

As was the case earlier, draw needs information from both the Ul and the
item. TheUI information is obtained within the context object and the item is
passed in as a reference. The only difference is that instead of doing all this in
the render methodof Item, we invoke the appropriate draw method on the
Ul object with which the view has been configured.

4.6.2 Implementation of the Model Class

The class maintains itemList and selectedList, which respectively
store the items created but not selected, and the items selected. The
constructor initialises these containers.

public class Model extends Observable {
private Vector itemList;
private Vector selectedList;
public Model () {
itemList = new Vector();
selectedList = new Vector();

}
// other methods

}

The setUIContext method in the model in turn invokes the setUIContext
on Item,

public static void setUIContext (UIContext uiContext) {
Model.uiContext = uiContext;
Item.setUIContext (uiContext) ;

}
As an Observable, the model notifies all of the views when it needs to
inform them of changes. We have seen that this approach allows us to change
UIContext dynamically, and also supports the displaying of multiple
views simultaneously, where each view is using a different UIContext,
At the moment, we handle the drawing of items (including a possibly
‘incomplete’ one), especially labels, by having a method updateView in



Software Architecture and Design _ (18CS73
the model, which is called by the controller at appropriate moments, for

example after each character isread in from the keyboard. The method simply
asks that the view be refreshed.



Software Architecture and Design (18CS73

public void updateView() {
setChanged() ;
notifyObservers (null) ;

}

The addItem method is simple: it just stores the item in itemList and
redrawsthe screen.

public void addItem(Item item) {
itemList.add (item);
updateView() ;

}

The class also provides a method to delete an item.

public void removeItem(Item item) {
itemList.remove (item) ;
updateView() ;

}

When an item is selected by the user, the model marks it as selected by
transferringthe item from itemList to selectedList as below.

public void markSelected(Item item) {
if (itemList.contains(item)) {
itemList.remove (item) ;
selectedList.add (item)
; updateView () ;
}
}

Selected items are deleted using the deleteSelectedItems.

public void deleteSelectedItems () {
selectedList.removeAllElements () ;
updateView () ;

}

The getItemsmethod is used bythe controller to determine which itemis
selected. The view uses the same method to render the items.
public Enumeration getItems() {

return itemList.elements();

}

Implementation of the Controller Class

The class must keep track of the current shape being created, and this is
accomplishedby having the following fields within the class.

private Line line;
private Label label;



Software Architecture and Design o (18CS73
When the view receives a button click to create a line, it calls one of the following



Software Architecture and Design (18CS73

controller methods. The controller supplies three versions of themakeLine
methodand keeps track of the number of points independently of the view.

public void makeLine () {
makeLine (null, null);
pointCount = 0;

}

public void makeLine (Point point) {
makelLine (point, null) ;
pointCount = 1;

}

public void makeline (Point pointl, Point point2) {
line = new Line(pointl, point2);
pointCount = 2;
model.addItem(line) ;

}

The variables pointCount and model are both fields within the
Controller class that respectively keep track of the number of points
received and the instanceof the Model class.

The execution of makeLine causes the line to be part of the model. The
viewcan set the endpoints of the line via the following method.

public void setLinePoint (Point point) {
if (++pointCount == 1) {
line.setPointl (point);
} else if (pointCount == 2) {
pointCount = 0;
line.setPoint2 (point) ;
}
model.updateView () ;
}

After it receives each end-point, the controller calls the model’s updateView
method to inform it that the view should be updated.

The approaches to draw a circle and add a label are similar. For a label,
rememberthat by pressing the backspace the user can delete a character. So we

provide amethodremoveCharacter for this purpose.

The following method is called by the view when it receives the
command to

select an item. The controller searches through the entire list of unselected items and
determines if one of them is selected, and if so, it moves the item from the list of
unselected items to the list of selected items.

public void selectItem(Point point) {
Enumeration enumeration = model.getItems();
while (enumeration.hasMoreElements()) {
Item item = (Item) (enumeration.nextElement());
if (item.includes (point)) {
model .markSelected (item) ;
break;



Software ﬁrchitecture and Design (18CS73

}
}



Software Architecture and Design (18CS73

Implementation of the View Class

The view maintains two panels: one for the buttons and the other for
drawing theitems.

public class View extends JFrame implements Observer {
private JPanel drawingPanel;
private JPanel buttonPanel;
// JButton references for buttons such as draw line, delete, etc.
private class DrawingPanel extends JPanel ({
// code to redraw the drawing and manage the listeners
}
public View() {
// code to create the buttons and panels and put them in the JFrame
}
public void update (Observable model, Object dummy) {
drawingPanel.repaint () ;
}
}

The code to set up the panels and buttons is quite straightforward, so we do not
dwellupon that.

The DrawingPanel class overrides the paintComponent method,
which is called by the system whenever the screen is to be updated. The
method displays all unselected items by first obtaining an enumeration of
unselected items from the model and calling the render method on each.
Then it changes the colour to redand draws the selected items.

public void paintComponent (Graphics g) {
model.setUI (NewSwingUI.getInstance());
super.paintComponent (g) ;
(NewSwingUI.getInstance ()) .setGraphics
(g); g.setColor (Color.BLUE) ;
Enumeration enumeration = model.getItems();
while (enumeration.hasMoreElements()) {
((Item) enumeration.nextElement ()).render();
}
g.setColor (Color.RED);
enumeration = model.getSelectedItems();
while (enumeration.hasMoreElements()) {
((Item) enumeration.nextElement ()) .render();
}
}

The DrawingPanel class also overrides the addMouseListener,
addKey- Listener, and addFocusListener methods. This is to

ensure that there is atmost one listener for each type of event on the drawing
panel.

private MouselListener currentMouselListener;
public void addMouselistener (Mouselistener newListener) ({



Software Architecture and Design (18CS73

removeMouseListener (currentMouselListener) ;
currentMouseListener = newListener;
super.addMouselistener (newListener) ;




Software Architecture and Design (18CS73

When this button is clicked, an instance of MouseHandler is created, and
it becomes the sole listener of mouse clicks. MouseHandler overrides the
mouseClicked method to determine the starting point of the label. Besides
asking the controller to set up a Label object with the given starting point,
the code makesthe drawing panel receive further button clicks and keyboard
events. Also note that the KeyHandler is a FocusListener as well,
which lets it know when it longerreceives keyboard input.

public void mouseClicked (MouseEvent event) {
view.setCursor (new Cursor (Cursor.TEXT CURSCR)) ;
Controller.instance () .makelLabel (event.getPoint (
)); drawingPanel.requestFocusInWindow () ;
drawingPanel.addKeyListener (keyHandler) ;
drawingPanel.addFocusListener (keyHandler) ;

}

Inits keyTyped method, KeyHandler transmits all printable characters
to the Label object via the controller. The keyPressed method
distinguishes betweenthe enter and backspace keys. For the former, it stops
listening to mouse clicks andkeyboard events. If the backspace is pressed, the
label is made to delete the last typedcharacter.

public void keyTyped (KeyEvent event) {
char character = event.getKeyChar () ;
if (character >= 32 && character <= 126) {
Controller.instance () .addCharacter (event.getKeyChar()) ;
}
}
public void keyPressed(KeyEvent event) ({
if (event.getKeyCode () == KeyEvent.VK_ENTER) {
view.setCursor (new Cursor (Cursor.DEFAULT CURSOR)) ;
drawingPanel.removeMouselListener (mouseHandler) ;
drawingPanel.removeKeyListener (keyHandler) ;
drawingPanel.repaint () ;
} else if (event.getKeyCode() == KeyEvent.VK BACK SPACE) {
Controller.instance () .removeCharacter () ;
}
}

If the user terminates label creation by clicking on a button, as opposed to
hitting the Enter key, the system executes the focusLost method of
KeyHandler, whichproperly ends the command.

public void focusLost (FocusEvent event) ({

view.setCursor (new Cursor (Cursor.DEFAULT CURSOR)) ;
drawingPanel.removeMouselListener (mouseHandler) ;

drawingPanel.removeKeyListener (keyHandler) ;
drawingPanel.repaint () ;



Softw§re Architecture and Design (18CS73



Software Architecture and Design (18CS73

Finally, just before it refreshes the screen, the view sets up UIContext within
themodel appropriately:

public void paintComponent (Graphics g) {
model.setUI (NewSwingUI.getInstance());
// rest of the code not shown

}
The Driver Program

The driver program sets up the model. In our implementation the controller
is inde-pendent of the Ul technology, so it can work with any view. The view
itself uses theSwing package and is an observer of the model.

public class DrawingProgram {
public static void main(String[] args) {
Model model = new Model () ;
Controller.setModel (model) ;
Controller controller = new Controller();
View.setController (controller);
View.setModel (model) ;
View view = new View();
model.addObserver (view)
; view.show() ;
}
}

A Critique of Our Design

The partial design of the view and the model are quite robust. We have
examined some of the issues to be taken care of earlier on, and the
implementation takes them into consideration. The controller appears to be
quite straightforward, and we simply need to add methods to handle all the
operations.

Let us see how the design stands up to the task of adding a new operation,
say,todraw a polygon.

1. We need to provide a new button which informs the user that the new operation
is available. We also should create a mouse handler to handle mouse clicks, etc.
These changes are relatively obvious and clearly unavoidable. Even then, note
that most of the classes in the view are left unchanged.

2. The model is not affected by adding new types of items, operations or new Uls.

3. The UIContext interface does not have to be necessarily extended when new
kinds of items are added.

4. Thecontrollershould have new methodssuchas makePolygonand addPoint
ToPolygon, It is not clear that this change is not a consequence of some basic



Software Architecture and Design _ (18CS73
flaw in our design. For instance, it might be possible to replace the methods

makeLine, makeCircle, etc. by a single method, saymakeShape.
Thus one drawback to our approach is that we need to change the
controller




Software Architecture and Design (18CS73

class every time new operations are added or even if we change the way
things areimplemented. In addition, the controller has all the implementation
in one class, which makes things complicated.

A more tricky problem is that of implementing undo. Clearly some kind of a
stackwould be needed to remember the operations that have been completed.
When an undo is requested, an element from the top of the stack is popped,
and this element has to be ‘decoded’ to find out what the last operation was.
This would require some kind of conditional, and the complexity of this
method would increase with the number of different kinds of operations that
we implement. In earlier chapters we have seen how such complexity can be
reduced by replacing conditional logic withpolymorphism. In the next section
we examine a pattern that can help us improve thedesign of the controller.

Implementing the Undo Operation

In the context of implementing the undo operation, a few issues need to be
high-lighted.

> Single-level undo versus multiple-level undo A simple form of undo is when
only one operation (i.e., the most recent one) can be undone. This is
relatively easy, since we can afford to simply clone the model before each
operation and restore the clone to undo.

» Undo and redo are unlike the other operations If an undo operation is
treated the same as any other operation, then two successive undo operations
cancel each other out, since the second undo reverses the effect of the first
undo and is thus a redo. The undo (and redo) operations must therefore
have a special status as meta-operations if several operations must be
undone.

> Not all things are undoable This can happen for two reasons. Some
operations like ‘print file’ are irreversible, and hence undoable. Other
operations like ‘save to disk’ may not be worth the trouble to undo, due to
the overheads involved.

> Blocking further undo/redo operations It is easy to see that uncontrolled
undo and redo can result in meaningless requests. In general, it is safer to
block redo whenever a new command is executed. Consider a situation
where we have the sequence: Select(a), undo, Select(a), redo. The redo tries
to mark a as selected, and this could result in an exception depending on how
things are implemented. A more severe problem arises with Create
Rectangle(r), Colour Rectangle(r, blue), undo, Delete(r), redo. Here, the
redo will attempt to colour a rectangle that does not exist any more.



Software Architecture and Design (18CS73

> Solution should be efficient This constraint rules out naive solutions like
saving the model to disk after each operation.

Keeping these issues in mind, a simple scheme for implementing undo could be
something like this:

1. Create a stack for storing the history of the operations.

2. For each operation, define a data class that will store the information necessary
to undo the operation.

3. Implement code so that whenever any operation is carried out, the relevant infor-
mation is packed into the associated data object and pushed onto the stack.

4. Implement an undo method in the controller that simply pops the stack, decodes
the popped data object and invokes the appropriate method to extract the infor-
mation and perform the task of undoing the operation.

One obvious approach for implementing this isto defineaclass StackObject
thatstores each object with an identifying String.

public class StackObject {

private String name;

private Object object;

public StackObject (String string, Object object) {
name = string;
this.object = object;

}

public String getName () {
return name;

}

public Object getObject () {
return object;

}
}

Each command has an associated object that stores the data needed to undo
it. Theclass corresponding to the operation of adding a line is shown below.

public class LineObject {
private Line line;
public Line getLine () {
return line;
}
public LineObject (Line line) {
this.line = line;
}
}

When the operation for adding a line is completed, the appropriate StackObject
instance is created and pushed onto the stack.

public class Controller {
private Stack history;
public void makeLine (Point pointl, Point point2) {



Software Archltecture and Design (18CS73

Line line = new Line(pointl, point2);



Software Architecture and Design (18CS73

model.addItem(line) ;
history.push(new StackObject ("line", new LineObject(line)));
}

// other fields and methods
}

Decoding is simply a matter of popping the stack reading the String.

public void undo () {
StackObject undoObject =history.pop();
String name = undoObject.getName () ;

Object obj = undoObject.getObject();
if (name.equals("line")) {
undoLine ( (LineObject) obj) ;

} else if (name.equals("delete")) {
undoDelete ( (DeleteObject)obj) ;
} else if (name.equals("select")) {

undoSelect ( (SelectObject)obj) ;
}
// one else if for each command

}

Finally, undoing is simply a matter of retrieving the reference to and
removing theline form the model.

public class Controller ({
public void undoLine (LineObject object) {
Line line = object.getLine();
model.removeltem(line) ;
}
}

There are two obvious drawbacks with this approach:

1. The long conditional statement in the undo method of thecontroller.
2. The need to rewrite the controller whenever we make changes such as adding or
modifying the implementation of an operation.

The object-oriented approach for dealing with the first drawback is to subclass the
behaviour by creating an inheritance hierarchy and replace conditional logic with
polymorphism.

Let us refactor the code to accomplish this. Before replacing the
conditional, however, we see that undo in the controller is mostly working
off the data stored in StackObject and our first order of business is to
extract and move this method.

public class Controller ({
private Stack history;
public void undo () {
StackObject undoObject = history.pop();
undoObject.undo (this) ;
}
// other fields and methods



Softw§re Architecture and Design (18CS73

public class StackObject {




Software Architecture and Design (18CS73

public void undo (Controller controller) ({

String name = getName () ;

Object object = getObject();

if (name.equals("line")) {
controller.undoLine ( (LineObject)object) ;

} else if (name.equals("delete")) {
controller.undoDelete ( (DeleteObject)object) ;

} else if (name.equals("select")) {

controller.undoSelect ((SelectObject)object) ;
}
}
// other fields and methods

}

Figure. 4.15 Representing the drawing of a line

Now our conditional is in StackObject and we are ready to subclass this
behav- iour. Since each kind of data object is associated with an operation,
our hierarchy will have a subclass corresponding to each operation. For
example, to represent the drawing of a line, we have the class LineObject
as a subclass of StackObject (Figure 4.15).

This is a lot simpler and cleaner, although we have paid a price by
increasing the number of method calls. Note that we no longer ‘decode’ the
stored objectsand therefore the name field is not required. The makeLine
method is simplified, so itjust creates a LineObject and pushes it onto the
stack.

public void makeLine (Point pointl, Point point2) {
Line line = new Line(pointl, point2);
model.addItem(line) ;
history.push (new LineObject (line));

}

In the next subsection, we look into creating a fully reusable controller.
Figure. 4.16 The :
command class e

D8 s ract

Command

hundga () : bhoclean




Software Architecture and Design (18CS73

4.7.1 Employing the Command Pattern
The reader may have noticed a familiar pattern in the above code. In its undo
method, the controller passes itself as a reference to the undo method of the
StackObject, In turn, each subclass of the StackObject (e.g.,
LineObject) passes itself asreference when invoking the appropriate undo
method of the controller. This is an implementation of double dispatch that
we used when employing the visitor patternand was wholly appropriate when
introducing new functionality into an existing hierarchy. In this context,
however, we find that this results in unnecessarily moving a lot of data
around. One of the lasting lessons of the object-oriented experience is the
supremacy of data over process (The Law of Inversion), which we can
utilisein this problem by using the commandpattern.
The intent of the command pattern is as follows

“Encapsulate a request as an object, thereby letting you parametrise clients with different
requests, queue or log requests, and support undoable operations.”

We have partially satisfied this intent in our scenario by associating an object
with each operation. For instance, whenever we execute an operation to
create a line, a LineObject is created and pushed onto the stack. What we
have failed to recognise so far is that this object need not merely be a
repository of associated data but can also encapsulate the routines that need
access to this data.

The command pattern provides us with a template to address this. The
abstract Command class has abstract methods to execute, undo and
redo. Shown in figure 4.16

The default undo and redo methods in Command return false, and
these needto be overridden as needed by the concrete command classes.

Adding a line Since every command is represented by a Command object,
the first order of task when the praw Line cOmMmand is issued is to instantiate a
LineCommand object. We assume that we do this after the user clicks the
first endpoint although there is no reason why it could not have been created
immediately after receiving the



Software Architecture and Design (18CS73

undoManager

i
i
i
i
i
i
i
]

-

|-

Figure. 4.17 Sequence diagram for adding a line

command. In its constructor, LineCommand creates a Line object with
one of itsendpoints specified.

The central idea behind the command pattern is to employ two
stacks: one forstoringthecommandsthatcanbeundone(history stack)
and theother for maintainingthe commands that may be redone (redo
stack). The class UndoManager maintainsthese stacks. (Werefer to

the corresponding object by the term undo manager.) Theundo
manager plays the role of the controller, but we have given it a new

name tohighlight its main function. We take the approach that as
soon after the commandobject is created, the view informs the
undo manager, which is then expected toinitiate its bookkeeping
operations. Similarly, when the view has received all of thedata
needed to complete the command, it notifies the UndoManager
once more. The two methods beginCommand and endCommand
are for these two purposes.

In the course of execution of the beginCommand method,
theundo managerensures the the Line object gets added to the
model. This way, should the view be



oftware Architecture and Design 18CS73
refreshed, tﬁe partial line will be sh0\9vn on the screen. (

When the command is completed and the endCommand method is
executed, the undo manager pushes the command onto the history stack. This
way the latest command is always at the top of this stack. we clear the redo
stack whenever a newcommand is issued.



Software Architecture and Design (18CS73

Assume that the user issues the sequence of commands:

Add Label (Label 1)

Draw Circle (Circle

Add Label (Label 2)

Draw Line (Line 1)
At this time, there are four Command objects, one for each of the above
commands,and they are on the history stack as in Figure. 4.18. The redo stack
Is empty: since no commands have been undone, there is nothing to redo.
The picture also showsthe collection object in the model storing the two
Label objects, the Circleobject, and the Line object.

Undoing an operation Continuing with the above example, we now look at
the sequence of actions when the undo request is issued immediately after
the line (Line 1) has been completely drawn in the above sequence of
commands. Obviously, the user views the command as undone if the line
disappears from the screen: for this, the Line object must be removed from
the collection. To be consistent with this action and to allow redoing the
operation, the LineCommand object must be popped from the history stack
and pushed onto the redo stack. The resulting configuration is shown in
Figure.4.19.
Not every command is undoable. So the general rule is that
when the undo operation is requested, if the top of the undo
stack is a command that can be undone, the command is
undone and transferred to the redo stack.
The redo operation is simple enough: if the redo stack is not empty, the
commandmust be reexecuted, and the top object in the redo stack must be




Software Architecture and Design (18CS73
transferred to

Figure. 4.18 Status of the stacks and the collection in the model



Software Architecture and Design (18CS73

T i

Figure. 4.19 Status of the stacks and the collection in the model after undo

As we noted earlier, not every command may be undoable. If an undoable
operation is on the undo stack, the undo cannot proceed beyond that
operation although there might be undoable operations underneath it in the
stack. To get around this problem, we might choose to not push undoable
commands onto the stack. This can be accomplished by making the
command itself assume the responsibility for pushing onto the history stack.
This can conveniently be done in the class’s constructor.

A related issue concerns unfinished commands. We use the term incomplete
com-mand to refer to a command that has not yet been properly terminated. An
incomplete item is an item, such as a line or a label, that might not have
proper values for every field. We use the term complete item to refer to an
item for which the user has sup-plied. all the input necessary for completely
specifying the item. For example, suppose a user clicks the ‘Create Line’
button and clicks one point. Before clicking a second time to specify the
second point, suppose the user clicks the ‘Add Label’ button. The create Line
command is incomplete. Moreover, the line is also incomplete at this stage,
and it is already stored in the model, which now ends up containing
incomplete data. One could argue that it was the user’s fault, but the program
must tolerate such errors and it would be nice if there was a way to fix this
problem.



Software Architecture and Desi 18CS73
How shouﬁd thIrS be ﬂandie%P? We can suggest at least two \(/vays:

1. We could prevent the possibility of users aborting commands in the middle. A
popular approach is to disable all command buttons when a new command is
finished and leave them disabled until the command is completed. When the



Software Architecture and Design (18CS73

command is completed, all of the buttons are enabled.
2. A second possibility is to handle this with an additional method in both the undo
manager and the command class.

The difficulty with the first approach is that the Ul is responsible for
ensuring data consistency. The responsibility for ensuring that items are
complete must rest with the command classes and not with the user interface.

Weproceed with the second choice, for which we will have the undo
manager keep the current command away from the history stack until the
command itself ‘certifies’ that it is complete. For this purpose, every
command class has an additional method, end, which checks whether the
item is complete and attempts to fill the missing values if necessary. If there is
not enough data to make the item complete, the methodreturns a false value
and the undo manager does not put the command on the stack.

The pseudo-code for the end method is as follows:

public boolean end() {

if item is incomplete
attempt to complete using data already received;
if cannot be completed

return false;

end if

end if

return true

}

The undo manager does not push a new command onto the stack until it is
clear thatthe item is complete.
We now explain the implementation of the above concepts.

4.7.2 Implementation
Subclasses of Command The concrete command classes (such as
LineCommand) store the associated data needed to undo and redo these
operations. Just as the makeLine method in the previous implementation
had three versions, the LineCommand class has three constructors, allowing
some flexibility in the designof the view.

The implementation of methods specific to the Command class are shown
below.The execute method simply adds the command to the model so
the line willbe drawn. To undo the command, the Line object is removed
from the model’s collection. Finally, redo calls execute,

public void execute () {
model.addItem(line);



Softw§re Architecture and Design (18CS73

public boolean undo () {

model.removeItem(line);
return true;

}



Software Architecture and Design (18CS73

public boolean redo () {
execute();
return true;

}

As explained earlier, the class has a method called end, which attempts to
complete an unfinished command. The situation is considered hopeless if
both endpoints are missing, so the object removes the line from the model
(undoes the command) and returns a false value. Otherwise, if the line is
incomplete (has at least one endpoint unspecified), the start and end points
are considered the same. The implementationis:

public boolean end() {
if (line.getPointl ()
undo () ;

== null) {

return false;
}
if (line.getPoint2() == null) {
line.setPoint2 (line.getPointl());
}

return true;

}

UndoManager It declares two stacks for keeping track of the undo and redo
oper- ations: (history) and (redoStack). The current command is
stored in a field aptly named currentCommand.

public class UndoManager {
private Stack history;
private Stack redoStack;
private Command currentCommand;

}

If the command was not properly terminated, we arrange matters such that
currentCommand will not be null when a new command is issued.
Recall thatwhen a new command is issued, the beginCommand method of
the undo manager is called. If currentCommand is not null at this time,
the undo manager attempts to complete it by calling the command’s end
method. The beginCommand methodis implemented as below.

public void beginCommand (Command command) {
if (currentCommand != null) {
if (currentCommand.end()) {
history.push (currentCommand) ;
}
}
currentCommand = command;
redoStack.clear () ;
command.execute () ;



Software Architecture and Design ] (18CS73
The undo and redo are straightforward operations.

public void undo() {




Software Architecture and Design (18CS73

if (! (history.empty())) {
Command command = (Command) (history.peek());
if (command.undo()) {

history.pop();
redoStack.push (command)

7

}

public void redo () {

if (! (redoStack.empty())) {
Command command = (Command) (redoStack.peek());
if (command.redo()) {

redoStack.pop () ;
history.push (command) ;

}

When a command is complete, the view calls the endCommand method of
the undo manager, which pushes currentCommand onto the history stack
and sets currentCommand to null,

public void endCommand (Command command) {
command.end () ;
history.push (command) ;
currentCommand = null;
model.updateView () ;

}

Handling the input The view declares one button class for each command
(add label, draw line, etc.). The class for handling line drawing is
implemented as below.

public class LineButton extends JButton implements ActionListener {
// fields for view, drawing panel, handlers, etc.
public LineButton (UndoManager undoManager, View jFrame, JPanel jPanel) {
// store the parameters and create the mouse listener
}
public void actionPerformed(ActionEvent event) {
// change the cursor
drawingPanel.addMouseListener (mouseHandler) ;
}
private class MouseHandler extends MouseAdapter ({
public void mouseClicked (MouseEvent event) {
if (first point) {
lineCommand = new LineCommand (event.getPoint());
UndoManager.instance () .beginCommand (1lineCommand)
} else if (second point) {
lineCommand.setLinePoint (event.getPoint ());
drawingPanel.removeMouselListener (this) ;
view.setCursor (new Cursor (Cursor.DEFAULT CURSCR)) ;
UndoManager.instance () .endCommand (lineCommand) ;



Software Architecture and Design (18CS73

}
}



Software Architecture and Desi(%n . i &18CS73
The above class thus directly creates the appropriate command object when a

request



Software Architecture and Design (18CS73

comes from a user.

4.8 Drawing Incomplete Items

Recall the terms incomplete item and complete item we introduced in the
previous section. There are a couple of reasons why in the drawing program
we might wish to distinguish between these two types of items.

1. Incomplete items might be rendered differently from complete items. For instance,
for a line, after the first click, the Ul could track the mouse movement and draw
a line between the first click point and the current mouse location; this line keeps
shifting as the user moves the mouse. Likewise, if we were to extend the program
to include triangles, which need three clicks, one side may be displayed after two
clicks. Labels in construction must show the insertion point for the next character.

2. Some fields in an incomplete item might not have ‘proper’ values. Consequently,
rendering an incomplete item could be more tricky. An incomplete line, for
instance, might have one of the endpoints null. In such cases, it is inefficient
to use the same render method for both incomplete items and complete items
because that method will need to check whether the fields are valid and take
appropriate actions to handle these special cases. Since we ensure that there is at
most one incomplete item, this is not a sound approach.

We can easily distinguish between incomplete items and complete items by
having a field that identifies the type. The render method will behave
differently based on this field. The approach would be along the following
lines.

public class Line {
private boolean incomplete = true;
public boolean isIncomplete() {
return incomplete;
}
// other fields and methods
}

public class NewSwingUI implements UIContext {
// fields and methods
public void draw(Line line) {
if (line.isIncomplete()) {
draw incomplete line;
} else {
draw complete line;
}
}
}

In circumstances such as the above, where we have variant behaviour based



Software Architecture and Design (18CS73
on field values, the object-oriented philosophy dictates subclassing, i.e., we
treat the incom- plete item as a different class of object with its own
rendering method. We create classes for incomplete items (such as
IncompleteLabel) that are subclasses



Software Architecture and Design (18CS73

of items (such as Label). Since the class IncompleteLabel is a
subclass of Label, the model is unaware of its existence. Once the object is
created, the incom-plete object can be removed from the model.

The details are as follows.

import java.awt.*;
public class IncompleteLabel extends Label {
public IncompleteLabel (Point point) {
super (point) ;
}
public void render () {
// code for rendering IncompleteLabel
}
public boolean includes (Point point) {
return false;

}
}

One problem we face with the above approach is that UIContext must
include the method(s) for drawing the incomplete items
(draw (IncompleteLabel label), in our example). This suggests
that UIContext needs to be modi-fied. However, the manner in which
incomplete items are rendered is an issue that largely relates to the look and
feel of the system. For instance, UIContextmight not have a method
draw (IncompletelLine 1line) and creator of some view
(NewSwingUI, for instance) might wish to include that. In general, we
would like a solution that allows for a customised presentation which may
require subclassing the behaviour of some concrete items. This can be
accomplished through RTTI. In particular, the situation where the
NewSwingUI wants its own method for drawing an incomplete line is
implemented as follows:
public class NewSwingUI implements UIContext {
// fields and methods
public void draw(Line line) {
if (line instanceof IncompletelLine) ({
this.draw((IncompleteLine) line);
} else {
//code to draw Line
}
}
}
The LineCommand object creates an IncompleteLine and adds this
to the model. This new class is thus known only to the controller and
NewSwingUI. When the label creation is complete, the
IncompleteLine object is removed from the model and replaced with a



~ Software Architecture and Design ] ~ (18CS73
Line object. This implementation therefore gives a solution where

variability is contained.

Finally, we examine item creation in this new context. Assume that the
user clicks on the ‘Add Label’ button. On the creation of the
LabelCommand object, an IncompleteLabel object is created and
stored within the command object. When label is completed, the end
method of the command object is called, and



Software Architecture and Design (18CS73

in this method, a Label object is created and data from the incomplete
version iscopied to it. The IncompleteLabel object is deleted from the
model and the Label object takes its place. The relevant code from
LabelCommand is shownbelow.

public void end() {
model.removeltem (label);
String text = label.getText();
label = new Label (label.getStartingPoint());
for (int index = 0; index < text.length(); index++) {
label.addCharacter (text.charAt (index)) ;
}

execute () ;

}

This completes the basic implementation of our simple graphical system.
Note thatif any new operation has to be added, all we have to do is create
new classes that extend Command and Item, and modify the view to allow
the user to invoke the new operation. Modifying the view is simply a matter
of defining a new class that extends JButton and adding an instance of
this class to the button panel. The model, the view and the controller are
essentially repositories for the items, buttons,and commands respectively, and
thus provide a framework for creating the specifiedsystem.
Adding a New Feature

Most interactive systems that are used to create graphical objects, allow users
to define new kinds of objects on the fly. A system for writing sheet music
may allow auser to define a sequence of notes asa group. This would enable the
user to manipulatethese notes as a group, making copies of these as needed.
In a system for drawing electrical circuits, a set of components
interconnected in a particular way could be clustered together as a ‘sub-
circuit’ that can then be treated as a single unit. In a drawing program like the
one we have created, a complex figure may be created as acollection of lines
and circles, which may have to be moved around a single unit. Inall these
cases, the user-friendliness of the system would be considerably improved if

a feature is provided to enable such operations.

Let us examine how our system needs to be modified to accommodate this. The
process for creating such a ‘compound’ object would be as follows: The user would
select the items that have to be combined by clicking on them. The system would
then highlight the selected items. The user then requests the operation of combing
the selected items into a compound object, and the system combines them into one.

Which Subsystem ‘Owns’ a Class?



Software Architecture and Design ) ) (18CS73
In our original approach to designing this system using the MVVC

architecture, we were partitioning the responsibilities between
the three subsystems. As we looked into the finer details of the
implementation, weencountered some problems and found some
suitable patterns that could improve our design. The



Software Architecture and Design (18CS73

use of these patterns, however apparently ‘blurs’ some of the
clear boundaries.Consider for instance the bridge pattern. We
created the UIContext interface within the model to house
the draw methods of all theitems. Themodel does not have
the information, however, to create a concrete instanceof
UIContext and thistask is left to the View class.
UIContext and its

implementing classes belong to the view subsystem.

The original controller was replaced by a collection of classes
including UndoManager and the various subclasses of
Command, so they could be considered belonging to the
controller subsystem. The undo manager definesthe interface for
the command but does not have any information on how each
individual command should receive and process input.

The reader should realise that the subsystems are only
providing a context within which the details can be fleshed out.
The controller is providing a formatfor the creation of commands
and also a system that manages these commands. When a
command has to be added, a class is defined and the view is
modified to allow for its invocation. Likewise the model
provides a template for rendering all the kinds of items, but a
complete knowledge of the view is needed to provide a concrete
implementation.

Once a compound object has been created, it can be treated as a any other
object. This process can be iterated, i.e., a compound object can be combined
with other objects (which could themselves be compound or simple objects)
to create another compound object. The system also allows the user to
‘breakdown’ a compound iteminto its constituent items by first selecting the
item(s) to be broken down and then choosing the ‘decompose’ operation.
Note that if a compound item is created by combining two compound items,
then decomposing it will give us back the two original compound items.
Finally, the system must have the ability to undo and redothese operations.

Since we have to store a collection of items, an obvious approach to
implementing this would be to create a newkind of item that maintains a
collection of the constituentitems. This would be a concrete class and would
look like this:



Software Arclhltecctture adr;g DeS|qn (18CS73
Ll lic class ompoun em

List items;

public CompoundItem(/* parameters */) {
//instantiate lists

}
public Enumeration getItems() {

//returns an enumeration of the objects in Items

}

// other fields and methods
}

Since items consists of both simple items and compound items, it seems
logical that all entities stored in items are designated as belonging to the
class Object. The model would also have to be modified so that the
container classes would holdcollections of type Object.



Software Architecture and Design (18CS73

Consider now any class that examines at the collection of items in the
model (i.e., a ‘client’ class). One of these would be the SelectCommand.
When a SelectCommand object gets the coordinates of the mouse click, it
iterates throughthe collection in the model to determine the selected item. If
the object is a simple item, it would be cast as an Item and the includes
method would be invoked; if the object is a compound item, it would be cast
as a CompoundItem and the getItems method would be invoked to
get an enumeration of the objects that make up the compound item. Clearly,
this is not the most desirable state of affairs since the client method is
querying the type of the object (which is akin to switchingon the fields of the
object) to determine what operation is to be performed. Our stan- dard
approach in such situations is to create an inheritance hierarchy and use dynamic

Figure. 4.20 Tree structure formed by compound items

binding. The dilemma here is that we have a two fundamentally different kinds of
entities: a simple item is a single item, whereas a compound item is a collection of
items. The composite pattern gives us an elegant solution to this problem.

The intent of the composite pattern is as follows (see footnote 1):



Software Architecture and Design (18CS73

Compose objects into tree structures to represent part-whole hierarchies. Composite lets
clients treat individual objects and compositions of objects uniformly.



Software Architecture and Design (18CS73

A compound item is clearly a composition of simple items. Since
each compound itemcould itself consist of other compound items,
we havethe requisite tree structure. The class interaction
diagram for the composite pattern is shown in Fig. 4.21.

Note that the definition of the compound item is recursive and may
remind readers of the recursive definition of a tree. Following this
diagram, the class CompoundItem is redefined as follows:
public class CompoundItem extends Item ({
List items;
public CompoundItem(/* parameters */) {

//instantiate lists

}
public void render () {
// iterates through items and renders each one.

}

Figure. 4.21 Composite structure of the item hierarchy

public boolean includes (Point point) {

/* iterates through items and invokes includes on each item.

Returns true if any of the items returns true and false otherwise. */

}
public void addItem(Item item) {

// Adds item to items
}

// other fields and methods

}

Modifying the system to allow for creating compound objects is just like

any of the operations discussed earlier. The system already has an



Software Architecture and Design (18CS73
operation for selecting items. Once that is complete, user chooses the

‘create composite’ operation. This would require that a new class be
defined and that the view be modified to add this button to the button
panel. A new class, CompositeCommand is defined .the execute method
of this class removes all the selected items from the Model and adds
them to a new CompoundItem object, which is then added to the Model.
The view renders a Compoundltem exactly in the same way as it renders
any other instance of Item. Note also that the select operation invokes
the includes method on Compoundltem exactly as it would on simple

items.

4.9 Pattern-Based Solutions
Pattern is a solution template that addresses a recurring problem in

specific situations. In a general sense, these could apply to any domain.
In the context of creating software, three kinds of patterns have been
identified.

At the highest level, we have the architectural patterns. These
typically partition a system into subsystems and broadly define the role

that each subsystem plays and how they all fit together.

Architectural patterns have the following characteristics:

They have evolved over time
A given pattern is usually applicable for a certain class of software

system
The need for these is not obvious to the untrained eye

At the next level, we have the design patterns.



Software Architecture and Design (18CS73
These solve problems that could appear in many kinds of software

systems. Once the principles of object-oriented analysis and design have
been established it is easier to derive these.
At the lowest level we have the patterns that are called idioms.

» Idioms are the patterns of programming and are usually
associated with specific languages.

» They typically refer to the use of certain syntactic elements of the
language. Sometimes, we may save these as ‘macros’ to be copied
and pasted as needed thus enabling us to be more productive in
terms of code-generation.

» ldioms are something like these, but they are usually carefully

designed to take the language features (and quirks!) into
account to make sure that the code is safe and efficient.

The following code, for instance, is commonly used to swap:

temp=a;a=b;

b = temp;

In Perl, the list assignment syntax allows us to employ a more succinct

expression:

($a, $b) = ($b, $a);

This would be an example of an idiom for Perl. In addition to safety and
efficiency, the familiarity of the code snippet makes the code more
readable and reduces the need for comments. Typical Perl programmers
might be more comfortable with the second whereas a Java

programmer would prefer the first.



Software Architecture and Design (18CS73
Not all idioms are without conflict. There are two possible idioms for

an infinite loop:

for (;;) {

// some code

}
while (true) {

// some code

}

Examples of Architectural Patterns
The Repository

This architecture is characterized by the presence of a single data
structure called the central repository. Subsystems access and modify the
data stored in this. An example of such a system could be software used
for managing an airline. The subsystems in this case could be the ones
for managing reservations, scheduling staff, and scheduling aircraft. All
of these would access a central data repository that holds information

about aircraft, staff, and passengers.

The Client-Server
In such a layout, there is a central subsystem known as a server and
several smaller subsystems known as clients which are typically quite
similar. There is a fair amount of independence in the control flow, and
each subsystem may be using a different thread. Synchronization

techniques are often employed to manage requests and transmit



Software Architecture and Design (18CS73

results.

The world-wide-web is probably the best example of such architecture. The browsers running
on PCs are like clients and the sites they access play the role  of servers. The server could also
be housing a database and the clients could be processes that are querying and updating the
database. A variant/generalization of this is the peer-to- peer architecture where the
client/server role of the subsystems is interchangeable. These variants are typically hard to
design due to the possibility of deadlocks and a myriad of other problems that can complicate

the flow of control.

The Pipe and Filter

The system in this case is made up of filters, i.e., subsystems that processdata, and pipes, which

can be used to interconnect the filters.

e The filters are completely mutually independent and are aware only of the input data that
comes through a pipe, i.e., the filter knows the form and content of the data that came in, not how

it was generated.

e This kind of architecture produces a system that is very flexible and can be dynamically

reconfigured.

e An example of this would be that of processing incoming/outgoing data packets over a

computer network.

MODULE 5
Designing with Distributed Objects

Definition: Businesses usually install multiple computer systems that are
interconnected by communication links, and applications run across a network of
computers rather than on a single machine. Such systems are called distributed
systems.

Advantages

a. Itis more economical and efficient to process data at the point of origin.

b. Distributed systems make it easier for users to access and share resources.

c. They also offer higher reliability and availability: failure of asingle
computer does not cripple the system as awhole.

d. Itisalso more cost effective to add more computing power.

Drawbacks



Software Architecture and Design (18CS73

a. The software for implementing them is complex.

Distributed systems must coordinate actions between a number of
possibly heterogeneous computer systems; if data is replicated, the copies
must be made mutually consistent.

b. Data access may be slow because information may have to be
transferred across communication links.
c. Securing the data is a challenge.

As data is distributed over multiple systems and transported over
communication links, care must be taken to guarantee that it is not lost,
corrupted, or stolen.

5.1 Client server system

Distributed systems can be classified into :

1. Peer-to-Peer systems :
Every computer system (or node) in the distributed system runs the same set
of algorithms; they are all equals, in some sense

2. Client-Server systems :
There are two types of nodes: clients and servers. A client machine sends
requests to one or more servers, which process the requests, and return the
results to the client.

5.1.1 Basic Architecture of Client/Server Systems

» Figure below shows a system with one server and three clients.
» Each client runs a program that provides a user interface, which may or not
be a GUI.



Software Architecture and Design (18CS73

» The server hosts an object-oriented system.

» Like any other client/server system, clients send requests to the server, these requests
are processed by the object-oriented system at the server, and the results are returned.

» The results are then shown to end-users via the user interface at the clients.

User interface

Client

Object-oriented

User interface
system

Client

Server

User interface

Client
There is a basic difficulty in accessing objects running in a different Java Virtual Machine
(JVM). Let us consider two JVMs hosting objects as in Fig. below.
» A single JVM has an address space part of which is allocated to objects living in it.

For example,

Object 1 Object 3

A2 Ad
Object 2 Object 4

VM VM 2



Software Architecture and Design (18CS73

e Objects object 1 and object 2 are created in JVM 1 and are allocated at
addresses Al and A2 respectively. Similarly, objects object 3 and object 4 live
in JVM 2 and are respectively allocated addresses A3 and A4.

e Code within Object 2 can access fields and methods in object 1 using address
Al. However, addresses A3 and A4 that give the addresses of objects object 3
and object 4 in JVM 2 are meaningless within JVM 1.

This difficulty can be handled in one of two ways:

1. By using object-oriented support software:

The software solves the problem by the use of proxies that receive method calls on
‘remote’ objects, ship these calls, and then collect and return the results to the object that
invoked the call. The client could have a custom-built piece of software that interacts with the
server software. This approach is the basis of Java Remote Method Invocation.

2. By avoiding direct use of remote objects by using the Hyper Text

Transfer Protocol (HTTP).

The system sends requests and collects responses via encoded text messages. The
object(s) to be used to accomplish the task, the parameters, etc., are all transmitted via these
messages. This approach has the client employ an Internet browser, which is, of course, a
piece of general-purpose software for accessing documents on the world-wide web.

5.2 Java Remote Method Invocation
The goal of Java RMI is to support the building of Client/Server systes where the server hosts
an object-oriented system that the client can access programmatically.
| The objects at the server maintained for access by the client are termed remote objects.
| A client accesses a remote object by getting what is called a remote reference to the
remote object.
| After that the client may invoke methods of the object.
| The basic idea behind RMI is to employ the proxy design pattern.
| Java RMI employs proxies to stand in for remote objects. All operations exported to
remote sites (remote operations) are implemented by the proxy. Proxies are termed
stubs in Java RMI. These stubs are created by the RMI compiler.

Client -———>| Subject
trequest ()
Proxy | _ | RealSubject

+request () +reguest ()




Software Architecture and Design (18CS73

The set-up is shown in above figure:
| When the client calls a remote method, the corresponding method of the proxy object
| is invoked. The proxy object then assembles a message that contains the remote
object’s identity, method name, and parameters. This assembly is called marshalling.
In this process, the method call must be represented with enough information so that
the remote site knows the object to be used, the method to be invoked, and the
parameters to be supplied.
» When the message is received by it, the server performs demarshalling, whereby the
process is reversed.

Setting up a remote object system is accomplished by the following steps:

1. Define the functionality that must be made available to clients. This is accomplished by
creating remote interfaces.

2. Implement the remote interfaces via remote classes.

3. Create a server that serves the remote objects.

4. Set up the client.

52.1 Remote Interfaces

1. In the case of RMI, the functionality exported of a remote object is defined via what is
called a remote interface. A remote interface is a Java interface that extends the

interface java.rmi.Remote.
2. Clients are restricted to accessing methods defined in the remote interface. We call

such method calls remote method invocations.

Remote method invocations can fail due to a number of reasons:

a. The remote object may have crashed,
b. the server may have failed, or
c. the communication link between the client and the server may not be operational, etc.

NOTE: Java RMI encapsulates such failures in the form of an object of type
java.rmi.RemoteException; as a result, all remote methods must be declared to throw this

exception.

import java.rmi.=*;

public interface BookInterface extends Remote ({
public String getAuthor () throws RemoteException;
public String getTitle() throws RemoteException;

public String getlId() throws RemoteException;



Software Architecture and Design (18CS73

5.2.2 Implementing a Remote Interface

1. The next step is to implement via remote classes.

» Parameters to and return values from a remote method may be of primitive type, of
remote type, or of a local type.

» All arguments to a remote object and all return values from a remote object must be
serializable. Thus, they must implement the java.io.Serializable interface.

» Parameters of non-remote types are passed by copy;

> Intuitively, remote objects must somehow be capable of being transmitted over
networks. A convenient way to accomplish this is to extend the class
java.rmi.server.UnicastRemoteObject.

(S} Jeaawvas 1L
Lmpaort jsmavaa . rml .~ ;
(S |

| PRV ol SRR SRV N - 3

prraltal A e arleaarisr Book wextancds Undl ccamse e men b astOls Jesc t Lango L sxtniesrato s
Bookintartfacocda, Sar lallzzabla (
r1lneg Lt )eny
rilng saulthor ;
ring 1¢1,;
mats> 1l 4 e Reoaok (S0 ineg titliaeal, Huring st hhorl ., String el l)
CInnrows Reamotailxceap ol on {
LS B S A Ll besl
mut hox muathor’l ;
1 Let g

[S1E 5 S0 B B String getAutihnor () thhrows Itamotaitxcap . L oaon (
FertAatr savs b e

)

[ELER =0 BN W HUuring gest''l o Les ) U hircnwst 12esmeat asllxcrasgat. oo {
rerliowuarn =% O B

)

[STEE SN B R SLLring ogeaet aaq) Chhoowses RomolLoaEBExcop i lon {
reztouarn 1cd;

]

)

2. Since it is a remote class, Book must be compiled using the RMI compiler by
invoking the command rmic as below.

Rmic Book

The compiler produces a file named Book Stub.class, which acts as a proxy for calls
to the methods of BooklInterface. The stub contains a reference to the serialized object
and implements all of the remote interfaces that the remote object implements. All
calls to the remote interface go through the stub to the remote object.

3. Remote objects are thus passed by reference. This is depicted in Figure below:



Software Architecture and Design (18CS73

Cllient 1 Remote site

™| Remote object
Proxy (ﬁlul)L///

Client 2 / =
return

/

Proxy (stub)

> Here, we have a single remote object that is being accessed from two clients.

» Both clients maintain a reference to a stub object that points to the remote object that
has a field named a.

» Suppose now that Client 1 invokes the method setA with parameter 5.

> The call goes through the stub to the remote object and gets executed changing the
field a to 5. any changes made to the state of the object by remote method invocations
are reflected in the original remote object.

> If the second client now invokes the method getA, the updated value 5 is returned to it.

NOTE: parameters or return values that are not remote objects are passed by value. Thus,
any changes to the object’s state by the client are reflected only in the client’s copy, not in the
server’s instance.

5.2.3 Creating the Server

Before a remote object can be accessed, it must be instantiated and stored in an object
registry, so that clients can obtain its reference. Such a registry is provided in the form of the
class java.rmi.Naming. The method bind is used to register an object and has the following
signature:

public static void bind(String nameInURL, Remote object)
throws AlreadyBoundException, MalformedURLException,

RemoteException

The first argument takes the form //host:port/name and is the URL of the object to be registered;

» host refers to the machine (remote or local) where the registry is located,
» port is the port number on which the registry accepts calls, and



Software Architecture and Design (18CS73

» name is a simple string for distinguishing the object from the other objects in the registry.
» Both host and port may be omitted if its in localhost and port no is 1099.

The process of creating and binding the name is given below.

try {
<interface-name> object = new <class-name> (parameters) ;
Naming.rebind("//localhost:1099/SomeName", object) ;

} catch (Exception e) ({
System.out.println("Exception " + e);

}

The complete code for activating and storing the Book object is shown below.

import java.rmi.x*;
import java.rmi.server.x;
import java.rmi.registry.Registry;
import java.rmi.registry.LocateRegistry;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;
public class BookServer ({
public static void main(String[] s) {
String name = "//localhost:1099/" + s[0];
try {
BookInterface book = new Book("tl", "al", "idl");
Naming.rebind (name, book) ;
} catch (Exception e) {
System.out.println("Exception " + e);

5.24 The Client
A client may get a reference to the remote object it wants to access in one of two ways:

1. It can obtain a reference from the Naming class using the method lookup.



Software Architecture and Design (18CS73

SomeInterface object = (SomelInterface) Naming.lookup
("//localhost:1099/SomeName") ;

2. It can get a reference as a return value from another method call.

In the following code, the getters of the Book Interface object are called and displayed.

import java.util.=x;
import java.rmi.*;
import java.net.x*;
import java.text.x;
import java.io.=*;
public class BookUser {
public static void main(Stringl[] s) {

try {
String name = "//localhost/" + s[0];
BookInterface book = (BookInterface) Naming.lookup (name) ;
System.out.println(book.getTitle() + " " + book.getAuthor()

+ " " + book.getId());
} catch (Exception e) {
System.out.println("Book RMI exception: " + e.getMessage());
e.printStackTrace() ;

5.2.5 Setting up the System

1. To run the system, create two directories, say server and client, and copy the files
BooklInterface.java, Book.java, and BookServer.java into server and the file
BookUser.java into client.

2. Then compile the three Java files in server and then invoke the command

rmic Book

3. This command creates the stub file Book Stub.class.
Copy the client program into client and compile it.
5. Run RMI registry and the server program using the following commands

s



Software Architecture and Design (18CS73

start rmiregistry
java -Djava.rmi.server.codebase=file:C:\Server\BookServer

BookServer MyBook

» The first command starts the registry and
» The second causes the Book instance to be created and registered with the
name MyBook.

6. Finally, run the client as below from the client directory.

java -Djava.rmi.server.codebase=file:C:\Client\BookUser

BookUser MyBook

7. The client code starts, looks up the object with the name MyBook, calls the object’s
getter methods, and displays the values.

5.3 Implementing an Object-Oriented System on the Web

5.3.1 HTML and Java Servlets

» System displays web pages via a browser has to create HTML code.

» HTML code displays text, graphics such as images, links that users can click to
move to other web pages, and forms for the user to enter data.

» An HTML program can be thought of as containing a header, a body, and a trailer.

The header contains code like the following:
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>
<head>
<meta content="text/html; charset=IS0-8859-1"
http-equiv="content-type">
<title>A Web Page</title>
</head>

» The first four lines are usually written as given for any HTML file.

» observe words such as html and head that are enclosed between angled brackets (< and
>). They are called tags.

» HTML tags usually occur in pairs: start tag that begins an entry and end tag that
signals the entry’s end. For example, the tag <head> begins the header and is ended
by </head>.



Software Architecture and Design (18CS73

» The text between the start and end tags is the element content.
> In the fifth line we see the tag title, which defines the string that is displayed in the
title bar.
As a sample body, let us consider the following.

<body>
<hl>
<span style="color: rgb(0, 0, 255);">
<span style="font-family: lucida bright;">
<span style="font-style: italic;">
<span style="font-weight: bold; ">
An Application
</span>
</span>
</span>
</span>
</hl>
</body>

» The body contains code that determines what gets displayed in the browser’s window.
» Some tags may have attributes, which provide additional information.
For example
<span style="color: rgb(0, 0, 255);">

The tag span has its attribute style modified, so that the text will be in blue colour.
Attributes always come in name/value pairs of the form name="value".

They are always specified in the start tag of an HTML element.

The body contains code to display the string An Application in the font Lucida
bright, bolded, italicised, and in blue color.

The last line of the file is : </htmI> it ends the HTML file

YV V V V

A\

Entering and Processing Data

The complete code that allows us to enter some piece of text in the web page is given below.



Software Architecture and Design (18CS73

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">
<html>

<head>

<meta content="text/html; charset=I150-8859-1"
http-equiv="content-type">

<title>Sample Form</title>

</head>
<body>
<form actlon="/servlet/apackage.ProcessIinput" method="post">
<table>
<Lr>
<td align="right">Enter Data:</td>
<td><input type="text" name="userInput"></td>
</Lr>
<tr>
<td><input type="submit" value="Process"></td>
</tr>

</table>
</form>
</body>
</html>

The code that begins with the line :
<form action="/servlet/apackage.Processinput" method="post">

» The tag form begins the specification of a set of elements that allow the user to enter
information.

» The action attribute specifies that the information entered by the user is to be
processed by a Java class called Processinput.class, which resides in the package
apackage.

» The tag <table> begins the creation of a table.

» Each row of the table is described using the tag <tr>, and the tag <td> defines a cell in
the table.

» <input> tag has two attributes : type and name

e type: which specifies what is the type of input : "text", which means plain text or
"password", which makes the entry unreadable on the screen.
e name: must be given a unique value

<td><input type="text" name="userInput"></td>

» abutton of type "submit”, which when clicked causes the form data to be sent to the
server. The button has the label Process.



Software Architecture and Design (18CS73

<td><input type="submit" value="Process"></td>
There are two primary ways in which form data is encoded by the browser:

1. GET : GET means that form data is to be encoded into a URL
2. POST: POST makes data appear within the message itself.

Server-Side Code

» The server-side code Processlnput is an example of a servlet, which uses the
request- response paradigm.

» Servlets can process data sent using the HTTP protocol via a form.

» They can handle multiple requests concurrently.

» We create a servlet by extending the class HttpServlet as below.

public class ProcessInput extends HttpServlet {

» Since we transmitted form data using the POST method, we need to override a
method called doPost.

0 This method has two parameters, request and response that respectively
encapsulate the data sent by the client and the response to the client.
» The header of the doPost method is given below.

public void doPost(HttpServletRequest request, HttpServletResponse response) throws
IOException, ServletException {

> Data sent by the client through the form is retrieved using the request object as
below: String input = request.getParameter("userinput™);

» Afterthedataiscapturedandprocessed,theservletcreatesanHTMLpageusing the
response object as below.

response, setContentType("text/html");

responsge,getWriter () .println("<!DOCTYPE html PUBLIC \"-//W3C//DTD "+
“HTML 4.01 Transitional//EN\">");

» The first line states that the data is HTML and the second line begins the HTML code.

» The complete code for the servlet is given below



Software Architecture and Design (18CS73

package apackage;
Import javax.serviet.s;
1MporT Javax.serviet.htrp.s;
Import Java.awl.event.«;
lmport java.utll._s;
import java.lo.s;
public class Processinpot extends HttpServiet |
publlic vola doPost (HErpServietRequest request,
HttpServlietResponse response) Lhrows I10Exception,
ServietExcepticn |
String Input < request,.getParamoter(*userinput”);
response, setContentType( *text/huml*) ;
responsa.gerwriter () .printin{ *<!DOCTYPE html PUBLIC \*-//W3C//DTD * +
“HIML 4.01 Transitional/)/EN\*>*);
responsa.getWriter() printin{*<ntml>");
response. getWriter () .printin{*<head>"*);
response. getWriter () .printin{ *<meta content-\*rexc/htmi;* «
‘ charset=1S0-8859-1\"" 4
‘nttp-equlv=\"content-type\*>*);
response.getwritaer () .printin{ <title>Response Lo Tnput</titlie>*};
response.getWriter() .printin{‘</head>*);
response.getWritar () .printing *<body="*);
response . getwWriter() . .printin{*You enterad * + input};
response.getwriter() . printin{*</body=>"*);
response. qetwrlter() .printin{*</htmi>*),
)
public vola doGet (HULLpServiellequest request,
HttpServietResponse response) throws IORxceptlon,
Servietixception |
aoPost (request, response)
|
)

5.3.2 Deploying the Library System on the World-Wide Web

Data

- Servlet

Web page

User machine

Figure 5.1: How servlets and HTML cooperate to serve web pages

Developing User Requirements
First task is to determine the system requirements : Example Library system
1. The user must be able to type in a URL in the browser and connect to the library system.



Software Architecture and Design (18CS73

2. Users are classified into two categories:
a. super users:

» Superusers are essentially designated library employees, and ordinary
members are the general public who borrow library books. superusers can
execute any command when logged in from a terminal in the library.

b. Ordinary members.
» Ordinary members are the general public who borrow library books.
» Ordinary members cannot access some ‘privileged commands’.

In particular, the division is as follows:

a. Only superusers can issue the following commands: add a member, add a
book, return a book, remove a book, process holds, save data to disk, and
retrieve data from disk.

b. Ordinary members and super users may invoke the following commands:
issue and renew books, place and remove holds, and print transactions.

c. Every user eventually issues the exit command to terminate his/her session.

3. Some commands can be issued from the library only. These include all of the
commands that only the superuser has access to and the command to issue books.

4. A superuser cannot issue any commands from outside of the library. They can log in,
but the only command choice will be to exit the system.

5. Superusers have special user ids and corresponding password. For regular members,
their library member id will be their user id and their phone number will be the
password.

Logging in and the Initial Menu
Figure below shows the process of logging in to the system.

» When the user types in the URL to access the library system, the log in screen that
asks for the user id and password is displayed on the browser.

» Ifavalid combination is typed in, an appropriate menu is displayed.

» What is in the menu depends on whether the user is an ordinary member or a
superuser and whether the terminal is in the library or is outside.



Software Architecture and Design (18CS73

Validated f
l Log-in i Main menu j
2.4 Exit A

A

Choose a command Menu/Cancel

\i

Bad user-id/password
[ Command ]

L

Input related to the command

1. The Issue Book command is available only if the user logs in from a terminal in the
library.

2. Commands to place a hold, remove a hold, print transactions, and renew books are
available to members of the library (not superusers) from anywhere.

3. Certain commands are available only to superusers who log in from a library terminal:
these are for returning or deleting books, adding members and books, processing holds,
and saving data to and retrieving data from disk.

Add Book

The State transition diagram for adding book is shown below:

Data ‘
Add book |== Gommand complete@
Add Add book
book Cancel
Menu

» When the command to add a book is chosen, the system constructs the initial screen to
add a book, which should contain three fields for entering the title, author, and id of
the book, and then display it and enter the Add Bookstate.



Software Architecture and Design (18CS73

» By clicking on a button, it should be possible for the user to submit these values to

system.

» The system must then call the appropriate method in the Library class to create a
Book object and enter it into the catalog.

» The result of the operation is displayed in the Command Completed state

» From the Command Completed state, the system must allow the user to add another
book or go back to the menu.

» In the Add Book state, the user has the option to cancel the operation and go back to
the main menu.

Add Member, Return Book, Remove Book

» We need to accept some input (member details or book id) from the user,
access the Library object to invoke one of its methods, and display the
result.

Save Data
State transition diagram for saving data

Save data

J

' Main menu I Eiommad completedj

' |

Menu

» When the data is to be written to disk, no further input is required from the user.
» The system should carry out the task and print a message about the outcome.

Issue Book

A book may be checked out in two different
ways:

First, a member is allowed to check it out himself/herself. Here the system already has the
user’s member id, so that should not be asked again.

Second, he/she may give the book to a library staff member, who checks out the book for the
member. Here the library staff member needs to input the membered to thesystem followed
by the book id.



Software Architecture and Design (18CS73

» After receiving a bookid, the system must attempt to check out the book.

» Whether the operation is successful or not, the system enters the Book Id Processed
state. Complexity arises from the fact that any number of books may be checked out.
Thus, after each book is checked out, the system must ask if more books need to be
issued or not.

» The system must either go to the Get Book Id state for one more book id or to the
Main Menu state.

» As usual, it should be possible to cancel the operation at any time.

State transition diagram for issuing books

Cancel Bad member Id

‘ Issue book ] [

. W {Superuser] ‘J
Main menu ) Accept member Id

4

Good member Id

Issue book Y

[Ordinary member] & f
"L Get book Id

Cancel |

Book id Issue
Y book

Menu r
mek Id praocessed

Renew Books

» The system must list the title and due date of all the books loaned to the member.

» For each book, the system must also present a choice to the user to renew the book.

» After making the choices, the member clicks a button to send any renew requests to
the system.



Software Architec

> For

ture and Design (18CS73

every book renewal request, the system must display the title, the due date

(possibly changed because of renewal), and a message that indicates whether the
renewal request was honoured.
> After viewing the results, the member uses a link on the page to navigate to the main

menu.
The state transition diagram is given in Figure below
Cancel Bad member Id
i Renew books I I ~ J
[ Main menu J [Suparusay Accept member |d
=

4

A 4
Good member Id

Renew book v

[Ordinary member] f ™
Show books

borrowed

/

Cancel |
Renew

Menu
|‘ Result l

Design and Implementation

To deploy the system on the web, we need the following:

1.
2.

one of two

1

Classes associated with the library

Permanent data (created by the save command) that stores information about

the members, books, who borrowed what, holds, etc.

HTML files that support a GUI for displaying information on a browser and
collecting data entered by the user. For example, when a book is to be returned, a
screen that asks for the book id should pop up on the browser. This screen will
have a prompt to enter the book id, a space for typing in the same, and a button to
submit the data to the system.

A set of files that interface between the GUI ((3) above) and the objects that
actually do the processing ((1) above). Servlets will be used to accomplish this
task

Structuring the files HTML code for delivery to the browser can be generated in
ways:

Embed the HTML code in the servlets. This has the disadvantage of making the
servlets hard to read, but more dynamic code can be produced.



Software Architecture and Design (18CS73

2. Read the HTML files from disk as a string and send the string to the browser.
This is less flexible because the code remains static.

We attempt to combine the two approaches so as to utilize the advantages

1 Create a separate HTML file for every type of page that needs to be displayed. For
example, create a file for entering the id of the book to be returned, a second file for
displaying the result of returning the book, a third file for inputting the id of the book
to be removed, a fourth one for displaying the result of removing the book, etc.

2. Exploit the commonalities between the commands and create a number of HTML
code fragments, a subset of which can be assembled to form an HTML file suitable
for a specific context.

%+ The first option has the advantage of simplicity. However a rough calculation shows
that at least 28 files are needed.

% Although the second option is more involved because of the need to assemble a big
file from several fragments, we find that it presents some advantages over the first.

First, it reduces the number of files somewhat and
Avoids duplication of files.

For example, to change the way the library’s name is displayed in the screens,
every one of the HTML files will need to be updated! We thus opt for the second
choice.

Examples of HTML file fragment

Consider the two commands, one for returning and the other for removing books

> In both, the user must be presented with a web page that asks him/her to enter
a book id. We have just one file that displays this page.

» However, the servlet that needs to be invoked will change depending on the
context. Therefore, we code the servlet name as below.

<form action="GOTO_WITH_BOOKID" method="post">

» By simply changing the string GOTO_WITH_BOOKID in the servlet, we
can use the same HTML file in multiple situations

A similar approach is taken for accepting member ids.



Software Architecture and Design (18CS73

1.

> For every webpage, the header should display a title that depends on the
context. We maintain just one file for the header. This file has a string TITLE
that stands for the title of the web page. Depending on which page is being
displayed, TITLE is replaced by an appropriate string, which gets displayed in
the title bar.

» When a command is completed, we need to display a web page.

» we employ just one file, commandCompleted.html, to carry out this task. This
file is adapted, however, in two different ways.

command whose result is displayed by the commandCompleted.html file. For
example

,after completing the Add Book command, we need to give an option to issue the
command once again so that the user can add another book.

<a href="REPLACE_JS">REPLACE_COMMAND</a><br>

How to

remember auser

>
>

Servlets typically deal with multiple users.

When a servlet receives data from a browser, it must somehow figure out which user
sent the message, what the user’s privileges are, etc.

Each request from the browser to the server starts a new connection, and once the
request is served, the connection is torn down.

However, typical web transactions involve multiple request-response pairs. This
makes the process of remembering the user associated with a connection somewhat
difficult without extra support from the system.

{

The result to be displayed will vary on the command as well as whether the operation
was successful. To take care of this, the file has a string called RESULT
<h3> RESULT <br></h3>
Pseudocode
String result;
Member member;
String htmlFile = getFile("commandCompleted.html") :
if ((member = library.addMember (name, address, phone)) == null)
htmlFile = htmlFile.replace("TITLE", "Member not Added") ;
result = "Member could not be added";
} else {
htmlFile = htmlFile.replace("TITLE", "Member Added") ;
result = member.getName() + " ID: " + member.getId() + " added";
}
htmlFile = htmlFile.replace ("RESULT", result):;
To reduce the number of mouse clicks, the user may be given the option to repeat the



Software Architecture and Design (18CS73

» The system provides the necessary support by means of what are known as sessions,
which are of type HttpSession.

» When it receives a request from a browser, the servliet may call the method
getSession() on the HttpServietRequest object to create a session object, or if a
session is already associated with the request, to get a reference to it.

» To check if a session is associated with the request and to optionally create one, a
variant of this method getSession(boolean create) may be used.

> If the value false is passed to this method and the request has no valid HttpSession,
this method returns null. When a user logs in, the system creates a session object as
below.

HttpSession session = request.getSession();

» When the user logs out, the session is removed as below.

session.invalidate();

» The following code evaluates to true if the user does not have asession: that is, the
user has not logged in:

request.getSession(false) == null

A session object can be used to store information about the
session.

1. void setAttribute(String name, Object value)

This command binds value, the object given in the second parameter, to the attribute
specified in name. By setting the second parameter to null, the attribute can be removed.

2. Object getAttribute(String name)
The attribute value associated with name is returned.
3. void removeAttribute(String name)

This method deletes the specified attribute from this session.



Software Architecture and Design (18CS73

Configuration

» The server runs with the support of Apache Tomcat, which is a servlet container.

A servlet container is a program that supports servlet execution.

The servlets themselves are registered with the servlet container.

URL requests made by a user are converted to specific servlet requests by the servlet
container. The servlet container is responsible for initializing the servlets and
delivering requests made by the client browser to the appropriate servlet.

» The directory structure is as in Figure below:

Y YV V

Tomcat
Webapps
Library
/
HTML files WEB-INF

classes web.xml

library basicimplementation

serviets library classes

» We store the HTML files in a directory named Library, which is a subdirectory of
webapps, which, in turn, is a subdirectory of the home directory of Tomcat.

» The servlets are in the package library, which is stored in Library/WEB-INF/classes.

» The implementation of the backend classes such as Member, Catalog, etc. is in the
package basiclmplementation.

» Our implementation requires that the user create an environment variable named
LIBRARY-HOME that has as value the absolute path name of the directory that
houses the HTML files.



Software Architecture and Design (18CS73

» The deployment descriptor elements are defined in a file called web.xml. While this
file permits a large number of tags, our use of them is limited to mapping the URLSs to
servlets. To understand how this is done, first examine the following lines of XML
code.

<servlet-mapping>
<servlet-name>LoginServlet</servlet-name>
<url-pattern>/login</url-pattern>
</servlet-mapping>

» Thus when we write code such as URL=login in the HTMLfile, the string
login is mapped to the servlet name LoginServlet.

> But the servlet name given by the tag <servlet-name> is just a name that is mapped to
the fully-qualified class name of the servlet as below.

<servlet>
<gervlet-name>LoginServlet</servlet-name>
<servlet-class>library.Login</servlet-class>

</servlet>

» The list of superusers and their passwords is stored in a file named Privileged Users.

» The IP addresses of all client machines located in the library are listed in a file named
IPAddresses.

» Both files are to be stored in the same directory that has the HTML files.

» To run the system, first Tomcat needs to be started and then the library system needs
to be accessed from a browser by typing in the URL of the Tomcat home
concatenated with
/Library.

» The file index.html in the library directory is then accessed; this file directs the request
to the servlet Login.

Structure of servlets in the web-based library system

> A servlet receives data from a browser through a HttpServletRequestobject. This
involves parameter names and their values, IP address of the user, and so on.
For example, when the form to add book is filled and the Add button is clicked,
the servlet’s doPost method is invoked. As we have seen earlier, this method has
two parameters: a request parameter of type HttpServletRequest and a response
parameter of type HttpServletResponse.

» Each command is organized as a combination of one to three servlets.



Software Architecture and Design (18CS73

» The methods and doPost and doGet are collected into a class named LibraryServlet.

» This class has the structure shown in Figure below.

LibraryServiet

taddAttribute (request: HttpServletRequest,

attributeName: String, attributeValue: String): void
tsetAttribute (request: HttpsServletRequest,

attributeName: String, attributeValue: String): void
+getAttribute (request: HttpServletRequest,

attributeName: String): String
tdeleteAllAttributes (request: HttpServletRequest): void
+libraryInvocation (request: HttpServletRequest): boolean
+validateOrdinaryMember (userid: String, password: String): boolean
tvalidateSuperUser (userId: String,password: String): boclean
+getFile (htmlFile:String): String
+notLoggedIn (request:HttpServlietRequest): boolean
+noLoginErrorMessage () : String

tdoPost (request: HttpServletRequest, response: HttpServletResponse):

void

+doGet (request: HttpServletRequest, response: HttpServletRespense): void

t+run (request:HttpServletRequest, response:HttpservletResponse): String

Most of the methods of LibraryServlet fall into one of five categories:

1.

One group contains methods that store information about the user. This information
includes the user id, the type of terminal from which the user has logged in, etc. and
are stored in attributes associated with the session object. The methods are
addAttribute, setAttribute, getAttribute, and deleteAllAttributes.

Methods to validate users and help assess access rights. The validateSuper
Usermethod checks whether the user is a superuser and validateOrdinary Member does
the same job for ordinary members. The method library Invocation returns true if and

only if the user has logged in from a ter- minal located within the library.
The getFilemethod reads an HTML file and returns its contents as a String object.

The fourth group of methods are used for handling users who may have invoked a
command without actually logging in. The method notLoggedIn returns true if and
only if the user has not currently logged in. The method noLoginError Message
returns HTML code that displays an error message when a person who has not logged
in attempts to execute a command.

The final group of commands deal with processing the request and responding to it.
The doGet message calls doPost, which does some minimal processing needed for all
commands and then calls the abstract runmethod, which individual servlets override.




Software Architecture and Design (18CS73

Execution flow

| Processing a request sometimes involves simply generating an HTML page,
| The course of the execution of the command is shown in Figurebelow:

|Browser ”Conmmerl ILnbraryServIet | IRemoveBook I I Library l I Ca(alogl
I ] <

s |
Remove book |
.—-"
Bookld b ¢reate
Superuser request ’ HttpServietRequest

create

=
response  |HttpServietResponse

doPost(request, response)

o o S '
e o e et e b e e
s Nt i e e e
N o o e S S S

P

runirequest, response)
= [removeBookibogiid)

| fremoveBook(book|d

result it
HTML code with result] [«l= = = = = =~
HTML code with result B

T 1)
| | 1 |

-f
-

L

The URL associat'ed with the text is as below:

<a href="removebookinitialization">Remove book</a>

The URL for the servlet is removebookinitialization; recall that this corresponds to the
class RemoveBookinitialization, so when the link is clicked, the doPost method of that
servlet is invoked. The code for this method is in LibraryServlet and is as follows:

public void doPost(HttpServletRequest request, HttpServletResponse response)
throws IOException, ServletException

{

response.setContentType("text/html™); String page =run(request, response); if (notLoggedIn(requ

{
setAttribute(request, "page”, page);

}
response.getWriter().printin(page);

The first line in the method specifies the type of the file for the response object:
' Whatever is written to the response object is treated as HTML.



Software Architecture and Design (18CS73

The run method is invoked, which is implemented within the subclass. This
I 'method returns HTML code as a String object and is saved in the attribute named
page of the session. This helps in the following way.
o The system always remembers the last page displayed. If the user tries to
login from a different window of the browser, that page is redisplayed.
o It also helps when the user overwrites the current page by visiting some
other site and wants to come back to the library system.
o Finally, the page is written out and gets displayed in the browser.
The code for removing a book begins with the servlet RemoveBook Initialization, whose
run method is given below.

package library;
import javax.servlet.x*;
import javax.servlet.http.»*;
public class RemoveBookInitialization extends LibraryServlet (
public String run(HttpServletRequest request,
HttpServletResponse response) {
if (notLoggedIn(request)) {
return nolLoginErrorMessage() ;
}
String htmlFile = getFile(HEADER) ;
htmlFile = htmlFile.replace("TITLE", "Remove Book");

htmlFile += getFile (GET_BOOK_ID) ;

htmlFile = htmlFile.replace("GOTO_WITH_BOOKID", "removebook") ;
htmlFile += getFile (CANCEL) ;

htmlFile += getFile (END_PAGE) ;

return htmlFile;

| The first three lines in the runmethod check if the user has actually logged in and is
not here via some othermeans.
This can actually occur if the user has two windows connected to the library and

I the exit command is issued from one of the two.

If that is indeed the case, the method noLoginErrorMessage() is called. This

method simply generates an HTML page that displays ‘Not logged in’ and supplies

a link to the log in screen.

| In the case that the user is actually logged in, the HTML page is assembled. It
includes reading four files: one to begin the HTML page and the other to end it.

| In between, a form to enter the book id and a link to cancel the command are inserted.



Software Architecture and Design (18CS73

As a consequence, the browser at the client displays a page that either requires the
I user to enter the id of a book that should be removed or click on a link to cancel
the command and return to the main menu.

The HTML code for entering the book id is given below.

<form action="GOTO_WITH_BOOKID" method="post">
<table>
<tr>
<td align="right">1d:</td>

<td><input type="text" name="bookld"></td>
</tr>
<td><br><input type="submit" value="Enter Book 1d"></td>
</tr>
</table>
</form>

In the normal course of action, the user would enter a book id and click the button
labelled Enter Book Id. Notice the lines

<form action="GOTO_WITH_BOOKID"
method="post"> in the HTML file and the line

htmlFile = htmlFile.replace("GOTO_WITH_BOOKID", "removebook");

in the servlet. The place holder GOTO_WITH_BOOKID is replaced by the URL
removebook. Therefore, when the user submits the form, the RemoveBook servlet is
initiated.

Issuing books

An ordinary member may self-issue a book or may ask a library staff member, a
superuser, to issue the book for himself/herself. In the former case, we need to skip
asking the member’s id and in the latter case, the system must present a screen for entering
the member id.

Like all other commands, the user clicks on a link to issue books; the HTML file
contains the lines

<td valign="top" width="160">



Software Architecture and Design (18CS73

<a href="issuebookinitialization">Issue book</a>

<br></td>

The click on Issue bookcauses the servlet IssueBooklInitializationto execute.
| This servlet checks if the user is a superuser, and if so, a screen to accept the
| member id is displayed; otherwise, the member to whom the book should be
issued is known and a screen to accept a book id is displayed.
The code is given below.

public class IssueBookInitialization extends LibraryServlet (
public String run(HttpServletRequest request, HttpServletResponse response) |
if (notLoggedIn(request)) (
return noLoginErrorMessagel();
}
boolean privileged = getAttribute(request, "userType").equals("Privileged");
String memberld = getAttribute(reguest, "currentUserId"):;
String htmlFile = getFile (HEADER) ;
htmlFile htmlFile.replace("TITLE", "Issue Book");
if (privileged) {
htmlFile += getFile (GET MEMBER_ID);
htmlFile = htmlFile.replace(*GOTO WITH MEMBERID", “issuebookgetmemberid®):;

} else (
htmlFile += getFile(GET _BOOK_ID):;
htmlFile = htmlFile.replace("GOTO_WITH BOOKID", "issuebookgetbookid");

)

htmlFile += getFile(CANCEL) ;
htmlFile += getFile(END PAGE) ;
return htmlFile;

We now discuss how we remember the member for whom the book is to be issued.
The session object can store attributes and that commands such as issuing a book
I and placing a hold are always carried out for a specific member.
That member’s id is stored in the attribute currentUserld.
'|f the session was for an ordinary member, the value for this attribute is the
member’s id itself. Otherwise, when a superuser is logged in, the value changes
depending on the member for whom the command is being carried out; when the
command does not involve a member , the value of this attribute is the empty
string ("").

From the above discussion, clearly,
String memberld = getAttribute(request, "currentUserld");

would be the empty string if the user is a superuser and the logged-in-member’s id



Software Architecture and Design (18CS73

otherwise.
The servlet IssueBookGetMemberld retrieves the id of the member to whom books
should be issued:

String memberld = request.getParameter("memberld");

If the member id is invalid, the HTML file consists of an error message and a form to
accept the member id. In this case, note that control will come back to the same servlet.

if (!library.searchMembership(memberId)) (
htmlFile += gebtlile(COMMAND COMPLETED) ;
htmlFile htmlFile.replace("RESULT", "Could not locate member");

htmlFile += getFile(GET_MEMBER_ ID);
htmlFile = htmlFile.replace("GOTO_WITH MEMBERID", "issuebookgetmemberid");
htmlFile = htmlFile.replace("REPLACE_JS", "");

htmlFile = htmlFile.replace("REPLACE_COMMAND", "");

| The IssueBookGetBookldservlet gets the book id from the form, retrieves the value of
the attribute currentUserld to get the member id and calls the issueBook method of
Library.

| The result is then used to replace the string RESULT in the commandCompleted
HTML file.

String bookId = request.getParameter ("bookId");
String memberId = getAttribute(request, "currentUserId");

Book book;
String result;
if ((book = library.issueBook (memberId, bookId)) == null) {
result = "Book could not be issued";
} else {
result = book.getTitle() + "issued.";
}
htmlFile = htmlFile.replace("RESULT", result);
htmlFile += getFile(GET_BOOK_ID) ;
htmlFile = htmlFile.replace("GOTO_WITH_BOOKID", "issuebookgetbookid") ;

The result of invoking issueBookis stored in the string RESULT as has been the case for other
commands.

Renewing books

| The member id needs to be accepted if the user is a superuser; otherwise, that step can
be bypassed.
| Toallow renewal, the title and due date all of the books checked out to the user must be



Software Architecture and Design (18CS73

displayed.
I Also, for each book a checkbox needs to be shown, so the user can check it if he/she
wants the book to berenewed.

The HTML code, stored in the file renewBook.html, for this part of the process is
given below.

<tr>

<td> TITLE </td>

<td> DUE_DATE </font> </td>

<td> <input type="checkbox" name="RENEW" /> </td>
</tr>

The type checkboxdenotes a checkbox control, which the user can click to indicate
that a book should be renewed.

| The three strings, TITLE, DUE_DATE, and RENEW are placeholders for the
book title, book id, and the name of the checkbox control. T

| The idea is that the above five lines of code will be replicated as many times as the
number of books checkedout.

| The list of books must be assembled from two servlets: RenewBooks Initialization
if the user is an ordinary member and RenewBooksGet Memberld if the user is a
superuser.

| Since the code to perform this task is a bit lengthy, it is extracted into LibraryServlet.

The code, given below,

protected String assembleBooks (HttpServletRequest requesgt, String memberld) (
Int counter 0;
String htmlFile
for (Iterator issuedBooks library.getBooks (memberld) ;
igsuedBooks.hasNext (); counter++) {



Software Architecture and Design (18CS73

Book book (Book) (issuedBooks.next()):
htmlFile += getFile(RENEW BOOKS) ;
htmlFile htmlFile.replace("TITLE", book.getTitle()):
htmlFile = htmlFile.replace("DUE_DATE", book.getDueDate()):;
setAttribute(request, "bookId" + counter, book.getlId()):
setAttribute({request, "title" + counter, book.getTitle()):
setAttribute (request, "dueDate" + counter, book.getbDueDate());
htmlFile = htmlFile.replace("RENEW", "renew" + counter);

)

setAttribute(request, "numberOfBooks", counter + ""):

return htmlFile;

First gets an iterator for the books checked out.
- The HTML file is built up from the file renewBook.html
1 The strings TITLEand DUE DATEare respectively replaced by the book’s title
| and due date.
| A unique name for the checkbox is generated by replacing the string RENEWby
the concatenation of renewand a counter that is incremented once per loop iteration.
| The RenewBooksservlet must somehow discover the book id and other details of
the books that are to be renewed.
| Also, we list the title and due date (possibly changed) of each book to be renewed
and a status message that says whether the book was renewed or not.
| This demands that we remember the details of all the books in the order we
displayed them.
| These are stored in the attributes bookld, title, and dueDate, each concatenated with
the value of the counter.
| Also, the number of books displayed is also stored in the attribute numberOfBooks.

Logaing in and logging out

| When the class LibraryServlet is loaded, it reads the files PrivilegedUsers and
IPAddressesand copies the information to main memory.
I When a user logs in, we have seen that control goes to the Login servlet.
71 It assembles the log in screen for display by the browser.
| Assume now that the user types in a user id and password and sends them to the
server.
| The Indexservlet reads in the user id and password and calls a method named
getMenu in the class MenuBuilder.
| This class is responsible for checking the validity of the user and returning the
appropriate menu. The class MenuBuilder itself is not a servlet, so to utilise the
methods of LibraryServlet, it needs the reference to the Indexservlet.
| To call some of these methods, MenuBuilder also needs the request object. For



Software Architecture and Design (18CS73

uniformity, we also pass the response object, although it is not currently used.
| The method thus has 5 parameters: a reference to the Index servlet, the request and
response objects, and the user-id andpassword.

if (servlet.validateSuperUser (userld, password)) {
servlet.setAttribute (request, "userType", "Privileged");
validated = true;

} else if (servlet.validateOrdinaryMember (userId, password)) ({
servlet.setAttribute (request, "userType", "Ordinary");
privileged = false;
validated = true;

}

if (!validated) {
return null;

}

| First, the code checks if the user is a superuser by calling the method validate
SuperUser of LibraryServlet, and if so, the attribute userType is given the value
Privileged.

| Otherwise, the LibraryServletclass’s validate OrdinaryMembermethod is called to
see if the user is a member of the library; in that case, the userType attribute is set

as Ordinary.

| Also, note the use of the boolean variables privilegedand validated.

| In the event of an invalid user- id—password combination, a null value is returned
to the Index servlet, which redisplays the log-in screen with an error message.

if (servlet.libraryInvocation(request)) {
servlet.setAttribute(request, "location", "Library");
location = LIBRARY;

} else {
servlet.setAttribute(request, "location", "Outside");

}

servlet.setAttribute (request, "userld", userld);

if (!privileged) {

IWith a successful log-in, the method checks whether the terminal used is within
the library premises or outside.
7 The attribute locationreflects this assessment.
| The currentUserldis set to the user’s id for ordinary users and to the empty string
(") for privileged users.



Software Architecture and Design (18CS73

private String getMenu(LibraryServlet servliet, boolean privileged,
boolean location) {
boolean OUTSIDE false;
boolean LIBRARY true;
String html = servlet.getFile(LibraryServlet.HEADER) ;
if (location == LIBRARY) {
html += servlet.getFile(LibraryServlet.LIBRARY COMMANDS) ;

}
if (privileged && location == LIBRARY) {
html += servlet.getFile(LibraryServlet.PRIVILEGED_ COMMANDS) ;
}
if (!privileged || location == LIBRARY) ({
html += servlet.getFile(LibraryServlet . GLOBAL_COMMANDS) ;
}
html += servlet.getFile(LibraryServlet.EXIT_ COMMAND) ;
html += servlet.getFile (LibraryServlet.END_PAGE) ;
return html;

The final step is to return the appropriate menu.

This is done bythe method getMenu that has three parameters.

The code assembles the HTML page by reading from four different

files inaddition to the files for beginning and ending the page.
“These meet the requirements we set forth under ‘Developing User
Requirements’. If the user has logged in from the library, the Issue Book
command is inserted intothe menu.

For privileged users, commands such as Add and Remove Book are
inserted. Ordinary members always get to issue commands such as
placing a hold andremoving a hold.

These commands are also available to superusers who log in from a library
terminal.Finally, the exit command is available to all users from anywhere.



